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Notations and Symbols

O(t, s) the output of a plant whose capital stock is installed at time t and whose age is s

k(t, s) the capital stock installed at time t and whose age is s

p(t) the unit price of capital at time t

q(t) the productivity of a new unit of capital at time t

(Ti)
∞
i=0 a sequence of points in time when capital stock is replaced

(Ii)
∞
i=1 a sequence of investments,

where Ii is an amount of investment into the latest vintage of capital at time Ti

(Ki)
∞
i=0 a sequence of capital stocks,

where Ki is just installed capital stock at time Ti (whose age is 0)

(Ri)
∞
i=0 a sequence of replacement intervals,

where Ri
def
= ∆Ti+1 = Ti+1 − Ti is a replacement interval at time Ti

I(t) a continuous extension of (Ii)
∞
i=1, that is, I(Tt) = It for all t ∈ 0, 1, 2, ...

R(t) a continuous extension of (Ri)
∞
i=0, that is, R(Tt) = Rt for all t ∈ 0, 1, 2, ...

k(t, s)1 a continuous extension of (e−δsKi)
∞
i=0,

that is, k(Tt, s) = e−δsKt for all t ∈ 0, 1, 2, ... and for all s ≥ 0

r the interest rate

δ the physical depreciation (wear and tear) rate

θ the fraction of scrapped capital stock has a value of new capital stock

γ the rate of change of the unit price of capital

λ the rate of change of the productivity of a new unit of capital

A Total Factor Productivity (TFP)

α the output elasticity of capital

d the stationary depreciation2 rate

d(t) the non-stationary depreciation rate at time t

1This further specification is employed in Sections 5 - 6, albeit the interpretation ”k(t, s) is the capital
stock installed at time t and whose age is s” still holds.

2d is also know as the rate of economic depreciation. Correspondingly, d − δ denotes the rate of
obsolescence, also known as a depreciation due to replacement.
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1 Introduction

The rate of depreciation plays an important role in measuring capital stock. Incorrect
depreciation rates lead to considerable mis-measurement of the aggregate capital stock.
There has been discussion that mis-measured capital stocks can partly solve so called
production slowdown puzzle (Musso, 2004, p.27, [1]; Mukoyama, 2008, p.521, [2]). By
production slowdown puzzle it is meant the sharp decline in the growth rate of produc-
tivity in industrialized countries after the late 1960s. Furthermore, the assumption of
a constant depreciation rate is challenged (Epstein & Denny, 1980, [3]). The story be-
hind goes as follows. Capital depreciation can be regarded as consisting of two factors:
physical depreciation (wear and tear) and obsolescence. Seemingly, obsolescence plays
greater role of these two (Sakellaris & Wilson, 2004, p.3-4, [4]). Again, obsolescence is
related to technological change, particularly to investment-specific technological change.
Investment-specific technological compromises technological change that is embodied in
capital. Greenwood et al. (1997) show that the ratio of investment-specific technological
change to (Hicks) neutral technological change has increased in the United States from
post-war period to 1990s (Greenwood et al., 1997, [5]). So, one can expect that the rate
of obsolescence has risen as well. Moreover, there has been a shift to the types of capital
that suffer more from obsolescence: ”In recent times, there has been a shift to investment
in ICT assets, which are most susceptible to higher rates of obsolescence” (Sumit Dey &
Chowdhuty, ONS, 2008, [6]). In any case, there is an apparent need for more accurate
estimates for capital depreciation and more systematic ways to handle obsolescence as a
part of depreciation.

The notion of technology is of an abstract nature and thus suffers from operational-
ization difficulties. For this reason, there is no available uncontroversial techniques to
measure it. Along with this concern, obsolescence should be linked to technology, either
neutral or investment-specific, somehow. Therefore, it may be rather difficult task to con-
duct an estimate for capital obsolescence by means of standard econometric techniques.
That is why, for instance, Greenwood and Krusell favor modeling approach (quantitative
theory) over traditional growth accounting when trying to account investment-specific
technological progress (Greenwood & Krusell, 2006, [7]). It is foreseen that explicit
methods to model obsolescence are needed. This rationalizes the title of the thesis. To
capture obsolescence, it should be endogenously modeled, not be taken as an exogenous
parameter.

It is given a brief overview on different methodologies of determining capital depreci-
ation. Particularly, the second section discusses the prevailing technique of determining
capital depreciation in national accounting, some econometric estimation techniques are
presented and two different approaches to model depreciation are introduced. The third
section covers more in detail the model constructed by Mukoyama (2008). In the fourth
section it is constructed a generalized version of Mukoyama’s model. The fifth section en-
compasses analytical and numerical results of the model presented in the previous section.
The sixth section discusses how the results fit into a broader context of macroeconomic
modeling. The last section concludes.
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2 Capital depreciation: Different approaches

2.1 Types of depreciation

The concept of depreciation has different meanings depending on the context in which
it is used. From the viewpoint of National Accounts, the depreciation of fixed assets
is defined as the decline of the aggregate capital stock due to the use of this capital
in production. Instead of using the concept of depreciation, in National Accounting
depreciation is known as the consumption of fixed capital. National Accounts defines
the consumption of fixed capital as: ”the decline, during the course of the accounting
period, in the current value of the stock of fixed assets owned and used by a producer
as a result of physical deterioration, normal obsolescence or normal accidental damage”
(United Nations System of National Accounts, 2008, p.123, [8]). Even more detailed
classification can be used for the sources of change in value of capital stock. Ahmad et
al. see that the value of capital asset can change due to five reasons: wear and tear,
foreseen obsolescence, exhaustion, and other changes that have an effect on demand and
supply for the asset and changes in the overall price level (Ahmad et al., OECD, 2005, [9],
p.2). Here, the concept of foreseen obsolescence slightly overlap with other reasons (e.g.
with exhaustion) as mentioned by Ahmad et al. In fact, for obsolescence there is given
a quite broad definition: ”the process whereby a capital good goes out of use, out of date
or experiences a decline in tis capacity to generate returns for reasons other than wear
and tear and catastrophes” (Ahmad et al., OECD, 2005, [9], p.9). Therefore, it should
be noted that exhaustion, that is, the rate of capital asset retires, is typically contained
in obsolescence. Specifically, the type of exhaustion that is due to technological progress
is included in obsolescence. For instance, firms in the ICT sector may have to frequently
replace their capital due to rapid technological progress in the computer architecture,
whose benefits they want to realize.

From the theoretic point of view, the two sources of the value decline in fixed capital
are of particular interest: physical depreciation and obsolescence. The physical depreci-
ation of capital refers to wear and tear that deteriorates the production efficiency of the
capital. On contrary, the obsolescence of capital is mainly caused by technical progress
leading to the fall in the relative productivity of old capital with respect to new capital
– Sakellaris and Wilson even view that ”embodied technological change” is ”synonymous
with obsolescence” (Sakellaris & Wilson, 2004, p.4, [4]). This relative productivity de-
cline leads to earlier capital replacement. Indeed, the relative productivity decline is
also reflected in the price of capital as conclude by Hill in a detailed discussion con-
cerning obsolescence (Hill, 1999, [10]). Nevertheless, the distinction of these two forms
of depreciation is typically omitted in macroeconomic models but some studies consider
explicitly both of these. It is also possible to distinguish different forms of capital and
view that these forms of capital are not equally vulnerable to obsolescence and physical
depreciation. For instance, Greenwood in his model treats structures and equipment as
different forms of capital and regards that the technological change affects equipment only
(Greenwood et al., 1997, [5]). In that model depreciation is linked to the technological
change, which implies that equipment is suffering from greater depreciation. Further dis-
tinctions among the forms of capital can be made. Prucha and Nadiri distinguish R&D
capital from physical capital and estimate different depreciation rates for R&D capital
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and physical capital (Nadiri & Prucha, 1996, [11]).

2.2 Methods

This subsection gives an overview how the rate of capital depreciation can be determined.
First, it is described a process how capital depreciation is determined in National Ac-
counts. The explanation is rather undetailed, since there are considerable differences in
practices among Institutions of National Accounts. Second, the aim is to shed light on
econometric estimation of capital depreciation by introducing two research papers that
covers the topic. The subsection is by no means an exhaustive description of different
estimation methodologies.

Consumption of fixed capital can be measured directly or indirectly. The direct
method is based on exact market valuation of the stock of fixed assets, whereas the indi-
rect method uses approximations. The latter method is the perpetual inventory method
(PIM). The perpetual inventory method is recommended method by System of National
Accounts and it is predominantly used to estimate the consumption of fixed capital (SNA,
2008, p.124, [8]). The method enables capital stock to be calculated from associated in-
vestments flows. The procedure can be summarized as follows. Data for past investments
is needed and the life pattern of an investment is specified in two stages. First, a retire-
ment distribution is determined. The distribution describes how the invested capital
life-time is spread over its life length mean. This average life length is estimated from
data. Second, a type of the depreciation function is chosen. Typically, this is chosen
between two convenient alternatives: an arithmetic (straight-line) depreciation function
or a geometric depreciation function. The depreciation function determines the path
how the capital depreciates over its life-time. Finally, the accumulated net capital stock
is calculated by the finite sum of depreciation corrected investments and initial capital
stock. For instance, when geometric depreciation function is assumed and the retirement
distribution is not taken into account, then the net capital stock in period t, Kt, can be
calculated by PIM method as,

Kt = (1− d0)tK0 +
t∑
i=0

(1− dt−i)iIt−i, (1)

where (di)
t
i=0 and (Ii)

t
i=0 denote depreciation rates and investments, respectively, over

time, and K0 is an initial capital stock (cf. Sumit Dey & Chowdhuty, ONS, 2008, [6]).
There are differences in practices among Institutions of National Accounts. For in-

stance, the evaluation of capital consumption in the United States Bureau of Economic
Analysis is based on the perpetual inventory method for some assets, while depreciation
patterns are taken from empirical studies (OECD, 2001, p.100, [12]) for other assets.
However, for most assets depreciation patterns are quite arbitrarily determined. That is
why many authors have proposed that depreciation rates should be based on econometric
studies (e.g. Prucha, 1995; Nadiri & Prucha, 1996, [11]; Hernndez & Maulen, 2005, [13]).

Nadiri and Prucha (1996) estimate depreciation rate of both physical and R&D capi-
tal within the framework of factor demand model. The estimation is performed for U.S.
total manufacturing sector data. The stocks of physical and R&D capital are assumed
to accumulate according to traditional law of motion for capital with a constant depre-
ciation rate. Their general estimation strategy is recursively solve physical and R&D
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capital stock with respect to flow of investments and initial capital stock. Obtained
time-series for two forms of capital is then plugged into demand equations for other in-
puts, namely materials and labor. These demand equations are derived consistent way
from their framework with additional assumptions on production technology. They adopt
”quite general” functional form for cost function, which represents production technol-
ogy. Finally, they construct time-series for expected output and input prices using a
second-order vector autoregressive model. They have data for all variables appearing in
aforementioned two demand equations. Therefore, the depreciation rates for both forms
of capital can be estimated jointly with other model parameters. Nadiri and Prucha use
a numerical algorithm that maximizes a statistical objective function which is eventually
based on the Gaussian full information maximum likelihood function. The complexity
of estimation procedure stems from the fact that substituted capital stocks in terms of
lagged investments depends on different altering number of investments (i.e. number in-
vestment lags required to represent capital stock of time t depends on that time parameter
t).

Hernndez and Maulen (2005) suggest a method to estimate the rate of depreciation
based on a production. They implement the method by fitting a Cobb-Douglas pro-
duction function to Spanish economy data and by carrying out full maximum likelihood
estimation. The method is similar kind of the method proposed by Nadiri and Prucha,
but instead of factor demand equations it is used the production function with only two
inputs (labor and capital), and depreciation rate is allowed to vary with respect to some
predetermined economic variable. For instance, they estimate one regression by assuming
that depreciation rate is in a linear relationship with the growth rate of GDP. Since the
proposed econometric approach involves highly non-linear relationships, there are some
methodological restrictions for the estimation procedure. The main focus of the paper is
to provide practical and easier method to carry out the estimation. The new method is
basically the second-order approximation of the original problem and the non-linearity is
just left to the parameters whereas the variables become linear. Hernndez and Maulen
argue that the estimation via production function than via factor demand equation would
lead to more robust results. The reason is that the production function is more techni-
cally based whereas factor demand equations are more behavioral in nature. In that case
the latter approach is more subject to different kinds of specification errors.

2.3 Models

Instead of treating capital depreciation as an exogenous parameter or independent from
underlying context, it can be determined endogenously within an appropriate framework.
At least two strands in the literature can be distinguished. These vary with respect to the
object they relate capital depreciation. The first focus on factors that are under control
of a producer such as capital utilization rate and capital maintenance. The second tries
to explain depreciation rate by the technological progress, which is an external factor
from the viewpoint of a producer.

The first approach relates capital depreciation to capital utilization or capital main-
tenance. In the former, it is assumed that capital may not be fully utilized. A producer
is able to choose capital utilization rate. Typically, it is assumed that depreciation rate
is a positive convex function of utilization rate (e.g. Calvo, 1975, [14]; Chatterjee, 2005,
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[15]). That is, the more intensively capital is used, the greater is capital depreciation.
Moreover, the marginal effect is increasing. It can be also found applications of this
methodology in the context of the general equilibrium literature (e.g. Greenwood et al.,
1988, [16]). In the case of capital maintenance, it is assumed that in addition to investing
in new capital, the producer can also invest in capital maintenance. The more is invested
in maintenance, the less is capital depreciation. The idea is that the producer can im-
pede capital depreciation by maintaining capital stock more intensively. Technically, it is
just usually assumed that the rate of depreciation is a negative function of maintenance
expenditures. Indeed, these two methodologies can be combined as several authors have
done (e.g. Fujisaki & Mino, 2009, [17] and Deli, 2016, [18]). That is, capital depreci-
ation depends on capital utilization and capital maintenance, positively and negatively,
respectively.

The second approach relates capital depreciation to technological progress. Partic-
ularly, the rate of depreciation is affected by investment-specific technological change.
Three studies taking this approach are introduced. The last two papers are main refer-
ences of the thesis.

Musso (2004) constructs a vintage capital two-sector model of unbalanced economic
growth (Musso, 2004, [1]). The first sector produces capital structures and consumption
goods. The second sector produces capital equipment. Both sectors benefit from neutral
technological progress. However, there is embodied (i.e. I-S) technological change only in
the second sector. The embodied technological change is modeled by a quality efficiency
function that describes the marginal product of capital as a multivariate function of time,
vintage and capital type (either equipment or structure). In particularly, the efficiency
of capital varies over time. Musso also assumes that in order to retain a certain fraction
of old capital it is required to pay maintenance costs. The main result of the paper,
based on the simulations of the model, is that the average service-life of equipment has
shortened since mid-1960s in the United States.

Greenwood et al. (1997) embed a simple vintage capital model into general equilib-
rium framework in order to study the role of investment-specific technological change as
an engine of economic growth (Greenwood et al., 1997, [5]). Their framework implies a
formula3 to compute the rate of obsolescence for given the rate of physical depreciation
and investment-specific technological change (Greenwood et al., 1997, [5], p.361),

d = 1− qt−1

qt
(1− δ), (2)

where d is depreciation rate, δ is physical depreciation rate and qt reflects the level of
investment-specific technology at period t. The formula is obtained as a by-product of an
transformation from one presentation of an economy with I-S technological change into
another presentation of the same economy (see Appendix B, Greenwood et al., 1997, [5]).
Thus, the formula does not steam from the explicit analysis on how IS-technology affects
on decisions of economic agents. Their empirical analysis rests on the assumption that
Gordon’s (1990) price index4 reflects the productivity in the production of new capital
goods, that is, Gordon’s index is a good measure of investment-specific technological
change, which in the above formula means that Gordon’s index equals to 1/qt. In the vein

3Precisely, the formula reads as q/q−1 = (1− δe)/(1− δ̃e), where in our terms δe = δ and δ̃e = d.
4See Robert Gordon’s equipment price index (Gordon, 1990, [19]).
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of general equilibrium theory, the model starts by giving comprehensive description of the
behavior of agents in the economy. In the production side it is assumed that there are two
forms of capital: structures and equipment. Investment-specific technological change is
assumed to affect equipment only. Greenwood et al. calibrate the model to U.S. National
Income and Product Account data and match up the time-series of investments, labor
and consumption with their theoretical counterparts in the model. Solving the model
gives the path for neutral productivity.

Mukoyama (2008) constructs a vintage capital model in which depreciation due to
obsolescence is endogenously determined and physical depreciation (wear and tear) is
exogenously given (Mukoyama, 2008, [2]). The model describes how a producer deter-
mines the optimal interval for the replacement of capital stock. The producer tries to
maximize the current value of a plant by choosing this replacement interval. Without re-
placement, capital is assumed to decay physically at a constant rate, and when replaced,
it is assumed that scrapped capital stock has a constant value of new capital stock. The
unit price of capital falls over time due to investment-specific technological change. The
main result is that the optimal length of the replacement interval becomes shorter when
the investment-specific technological change accelerates. This earlier capital replacement
leads to higher rate of obsolescence.

In this thesis, it is focused on the models that relates depreciation to technological
change. Particular emphasis is placed on Mukoyama’s (2008) model. The reasoning goes
as follows. The models that relate the rate of depreciation to capital utilization or main-
tenance explain the behavior of physical depreciation. Neither how vigorously producer
maintains capital stock nor how intensively producer utilizes existing capital, are directly
related to the opportunity-cost in the investment decision produced by technological
progress. Since obsolescence is directly linked to technological progress, it can be con-
cluded that these kind of models are not appropriate to explain obsolescence. Certainly,
if capital maintenance and/or utilization are linked to the inter-temporal investment deci-
sion in which technological progress is taken into account, these factors have also effect on
obsolescence. Further, obsolescence is more problematic than physical depreciation in the
sense that based on a few studies obsolescence plays greater role in economic depreciation
than physical depreciation does (this clearly depends on a type of capital) (Sakellaris &
Wilson, 2004, p.3-4, [4]; Greenwood et al., 1997, p.361, [5]). That is why it could be more
interesting to focus on the models that relate depreciation to technological change.

3 The replacement problem: Mukoyama (2008)

This section introduces a vintage capital model constructed by Mukoyama (Mukoyama,
2008, [2]). A similar kind vintage capital model also appears in Jovanovic and Rob (1999)
(Jovanovic & Rob, 1999, [20]). The model is presented without giving derivation. Full
derivation of the model can be found in Appendix A 5. The assumptions of the model
are presented and analyzed. Finally, there is a brief overview how to solve the model.

5To appreciate full derivation of the model may be helpful to understand the model presented in the
next section.
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3.1 The model

Mukoyama (2008) presents a following vintage capital model. A producer maximizes the
value of a plant. There is only one factor of production, capital. The output of a plant
whose capital stock is installed at time t and whose age is s, is denoted by O(t, s). The
capital stock, k(t, s), is determined by the installation time t and its age s. That is why
the model is a vintage capital model, namely the efficiency of capital is dependent on
the installation time (a vintage of the capital). Moreover, when capital ages it becomes
more inefficient due to physical depreciation (wear and tear). An important feature of
the model is that there is no capital accumulation. The whole capital stock is regularly
replaced to new one. For that, the producer has to choose a replacement interval T . The
replacement interval determines how often whole capital stock is replaced to the frontier
quality capital. Furthermore, it is assumed that old replaced (scrapped) capital has only
a value θ ∈ [0, 1] of new capital. The value of the plant at time t is denoted by V (t). The
problem is characterized by the following optimization,

V (t) = max
T

(∫ T

0

e−rsO(t, s)ds (3)

+ e−rT
(
V (t+ T )− p(t+ T )k(t+ T, 0) + θp(t+ T )k(t, T )

))
.

where r is the interest rate and p(t) is the unit price of capital at time t (Mukoyama,
2008, [2]).

For subsequent purposes, it is explicitly listed the assumptions postulated in Mukoyama’s
model. Two assumptions are imposed on the functional form of the capital. The first
states that the capital depreciates physically at a proportional rate δ. The second de-
scribes how capital is linked to its vintage (i.e. to an installation time t). Mukoyama
sees that this assumption is ”necessary for the replacement decision to be stationary”
(Mukoyama, 2008, [2], p.516). The third assumption deals with the production technol-
ogy and it restricts the form of production function to be Cobb-Douglas with one input.
The total-factor productivity A is a constant and the capital share parameter α lies in
]0, 1[. The fourth is the key assumption. It sates that the unit price of capital falls
at a steady rate γ over time, so here γ > 0. The idea is that this assumption reflects
investment-specific technological progress. The assumptions are (Mukoyama, 2008, [2]),

(i). k(t, s) = e−δsk(t, 0)

(ii). k(t, 0) = e
1

1−αγt

(iii). O(t, s) = Ak(t, s)α

(iv). p(t) = e−γt.

Mukoyama solves the model rather detailed manner. Therefore, it is confined to giving
the idea of the solution strategy. The solution of the model is given in more general setting
in Appendix B.

First, plug the assumptions (i) - (iv) into the equation 3. Then, the trick is to di-
vide the obtained equation by the term e

α
1−αγt and redefine the value function V (t) as
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v = v(t)
def
= V (t)e−

α
1−αγt. As the result an equation which does not depend on time t is

obtained. This time independence is a special property of Mukoyama’s model and the
property steams from the exponential functional form assumption. Particularly, the as-
sumption (ii) is imposed precisely for this purpose, that is, to ensure the time independent
solution. After these steps, the problem becomes to,

v = max
T

(∫ T

0

Ae−(r+αδ)sds+ e−
(
r− α

1−αγ
)
T (v − 1) + θe−(r+γ+δ)T

)
. (4)

Two equations can be derived from this equation. The necessary condition for the exis-
tence of a local maximum is that the derivative with respect to T should vanish. On the
other hand, if there exists a maximum, then the equation 4 itself should hold in the form
in which the maximum operator is absent. It is ended up with two equations and two
unknowns, namely T and v. Hence, a solution can be easily derived from this algebraic
system of equations. The solution takes a form,

Ae−(r+αδ)T − e−
(
r− α

1−αγ
)
T

1− e−
(
r− α

1−αγ
)
T

(
r − α

1− α
γ
)

(
A
(1− e−(r+αδ)T

r + αδ

)
− 1 + θe−(r+γ+δ)T

)
(5)

− θ(r + γ + δ)e−(r+γ+δ)T = 0.

This equation characterizes the optimal replacement interval T . The optimal T can be
implicitly solved from the equation 5 for given parameter values γ, α, δ, θ and r.

Once the optimal replacement interval T is obtained, the depreciation rate can be
calculated in the steady-state. If a number of plants is assumed to be a constant over
time, then the plant age is uniformly distributed over the interval [0, T ]. The rate of
depreciation can be calculated as (see Appendix C),

d =
(1− θ)k(t−T,T )

T∫ T
0

k(t−s,s)
T

ds
+ δ =

(1− θ)φ
eφT − 1

+ δ, where φ
def
= δ +

γ

1− α
. (6)

4 The replacement problem: Generalized model

In this section a generalized6 version of Mukoyama’s model is derived and solved. Es-
sentially, the model is ”generalized” in two ways. First, the economy is not assumed to
be in the steady-state in the sense that the optimal replacement interval is a constant
over time. Second, instead of assuming some specific functional form for capital stock,
it is determined endogenously within the model. The mechanical assumption (ii) con-
cerning the evolution of capital stock is replaced by more behavioral dynamics of capital

6The reason why the model can be called a ”generalized” version of Mukoyama’s model is justified
in the derivation of Mukoyama’s model (see Appendix A). Thus Mukoyama’s model can be seen as a
special case of this model.
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stock. Capital stock is determined by associated investment flows, physical depreciation
and investment-specific technological change. This requires that a producer is able to
decide the level of investments in addition to replacement times. Moreover, the way how
investment-specific technological change is modeled, is unified with other macroeconomic
literature. Investment-specific technological change is incorporated into the model in
two ways: through the capital accumulation equation in line with Greenwood and Deli
(Greenwood et al., 1997, [5] and Deli, 2016, p.323, [18]), and through the price of capital
in line with Mukoyama (2008).

4.1 The model

Consider a producer whose aim is to maximize the present value of a plant. The producer
decides points in time when capital stock is replaced and chooses an amount of investment
into the latest vintage of capital at the moment of the replacement. Let us denote by
(Ti)

∞
i=0 = (T0, T1, T2, ...) a sequence of points in time when capital stock is replaced and

by It an amount of investment into the latest vintage of capital at time Tt. Denote by
k(t, s)7 capital stock installed at time t and whose age is s. The evolution of capital stock
is governed by the following initial value problem,{

k(Tt, 0) = q(Tt)It
∂
∂s
k(t, s) = −δk(t, s) ,

(7)

where a function8 q describes investment-specific technological change. The first equa-
tion explains how just installed capital stock is determined by the level of investment-
specific technology and the amount of investment. This9 kind of approach to model
investment-specific technological change is commonly found in the macroeconomic liter-
ature (e.g. Fisher, 2006,[21]; Deli, 2016, [18]; Greenwood et al., 1988 & 1997, [16] &
[5]). Greenwood et al. model the investment-specific technology in similar fashion, par-
ticularly the accumulation equation for equipment type of capital is described similarly.
They point out that:”Changes in q formalize the notion of investment-specific technolog-
ical change.”(Greenwood et al., 1997,p.345,[5]). The second equation says that capital
stock physically depreciates at rate δ with respect to its age s, so being Mukoyama’s
assumption (i) in a differential equation form. It should be noted that capital stock does
not accumulate in the ordinary sense. When capital stock is depicted as a function of
(continuous) time, it can be perceived ”the piece-wise nature” of the dynamics of capital
stock. This is illustrated in Figure 1.

7It is assumed that k(s, t) is continuously differentiable on variable s.
8In stochastic setting, it can be assumed that q follows some stochastic process. For instance, Green-

wood et al. assume that q follows first-order Markov process (Greenwood et al., 1997, p.345,[5]).
9The difference is that normally the capital stock accumulates. Hence, the evolution of capital stock

typically reads as K̇ = −δK + qI.
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Figure 1. An evolution of capital stock described as a function of time.

After the producer has chosen a sequence of replacement times, say (Ti)
∞
i=0, the dis-

counted output from the period ]Tt, Tt+1], whose capital has been just installed, is ob-
tained by summing continuously the discounted outputs,∫ ∆Tt+1

0

e−rsO(Tt, s)ds, (8)

where r > 0 denotes the interest rate and O(t, s) denotes the output of a plant whose
capital stock is installed at time t and whose age is s. Note that it is integrated over
the age of capital stock. The producer invest an amount It+1 into the frontier-quality
capital at the end of the period ]Tt, Tt+1]. The total cost of investment also depends on
the current price of capital,

p(Tt+1)It+1. (9)

On the other hand, capital stock is no longer such a valuable as it was in the beginning
of the period. In order to get the value of capital stock, capital stock should be divided
by the factor q(Tt) (see Appendix D). If it is assumed that the fraction θ of the value of
capital stock is retrieved back to the producer, then the total rebate of scrapped capital
stock is,

θp(Tt+1)
k(Tt,∆Tt+1)

q(Tt)
. (10)

As in Mukoyama (2008), the quantity (1−θ) measures here ”an irreversibility of capital”.
Parameter θ should not include the aspect of physical depreciation of capital stock, since
this is already taken into account in the term (10).

The terms (8) - (10) are exploited in the determination of inter-temporal flow of
profits. The profit from the period ]Tt, Tt+1] is essentially same as the sum of the output
and the rebate of scrapped capital stock (i.e. the terms (8) and (10)) minus the cost of
investment(i.e. the term (9)). However, the flow of profits from different periods must
be discounted adequately. For this purpose, let us describe the (present) value of plant
at time t by a function V (t). The value of plant is determined by the discounted flow of
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profits. Let us consider the value of plant at the beginning of the period, that is at Tt.
In that case, the value of plant is determined by,

V (Tt) = max
(Ti)∞i=t+1,(Ii)

∞
i=t+1

∞∑
i=t

(
e−r(Ti−Tt)

∫ ∆Ti+1

0

e−rsO(Ti, s)ds (11)

+e−r(Ti+1−Tt)
(
− p(Ti+1)Ii+1 + θp(Ti+1)

k(Ti,∆Ti+1)

q(Ti)

))
s.t. for all i it holds that Ti+1 > Ti and Ii ≥ 0.

This equation together with the evolution of capital stock (7) formulate the replacement
problem. The initial value T0 is given, but I0 is chosen such that V (T0) is maximized. The
budget constraint is excluded because the investment policy is not of primary interest, and
the inclusion would complicate the analysis. However, in the presence of I-S technological
change, the exclusion of the budget constrain may induce too rapid growth of investments
and thus leading to further difficulties in the convergence of the series. It turns out that
this not a problem if interest rate r is set to ”sufficiently” high level (see Proposition 1).

The solution for the replacement problem would offer an interesting insight into how
investment-specific technological change affects to the life cycle of capital stock. Again,
this kind of information can be used to calculate the rate of depreciation.

4.2 Solution

The initial value problem (7) has a simple solution (see Appendix E), hence the problem
can be reduced to finding a pair of sequences that maximize the functional (11). This type
of optimization problem is encountered in a wide range of economic problems (infinite
horizon consumer problems, the general equilibrium modeling, etc.) and mathematically
the problem can be seen as a discrete calculus of variations problem. Some solution
methods (e.g. Cadzow, 1970, [22]) leads to solving non-linear difference equations, which
may imply further difficulties or need for approximations. Other solution methods include
the associated Lagrangian by means of which the problem can be solved.

Here, it is taken a bit different approach. The problem is first converted into a discrete
optimal control problem and then solved in the vein of dynamic programming. This is
carried out in three steps: the problem is converted, a corresponding Bellman equation is
derived and the optimal paths for control variables are solved by using Bellman equation.
At the result of that, it is obtained Euler equations for replacement and investment
policies. Those are exploited in both analytical derivations and numerical computations.

4.2.1 Step 1: Convert the problem into a discrete optimal control problem

The problem can be converted into an infinite horizon discrete optimal control problem.
First, the evolution of capital stock, which is described as an initial value problem, should
be solved and the solution should be rephrased in terms of discrete state variable. In
Appendix E it is shown that k(Tt, s) = e−δsq(Tt)It is the only solution of the initial value

problem (7). Define a new state variable Kt, capital stock at time Tt, by Kt
def
= k(Tt, 0),

and rephrase (by forwarding one period) the ”discrete” evolution of the capital stock as,

Kt+1 = q(Tt+1)It+1. (12)
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Further, the term k(Tt,∆Tt+1) in the objective function must be replaced by e−δ∆Tt+1Kt.
The evolution of replacement times must be reformulated. Let us invoke a new control
variable Rt, which describes the replacement interval at time Tt (one can think it as
Rt = ∆Tt+1). In that case the variable Tt takes a role of state variable and a state
equation can be formulated as,

Tt+1 = Tt +Rt. (13)

Consequently, there are two state variables Kt and Tt with two control variables It and Rt.
Given the state equations (12) and (13) for state variables, the problem can be rephrased
by a discrete optimal control problem,

V (Tt, Kt) = max
(Ri)∞i=t,(Ii)

∞
i=t+1

∞∑
i=t

(
e−r(Ti−Tt)

∫ Ri

0

e−rsO(Ti, s)ds (14)

+e−r(Ti+1−Tt)
(
− p(Ti+1)Ii+1 + θp(Ti+1)

e−δRiKi

q(Ti)

))
s.t. for all i it holds that Ri > 0 and Ii ≥ 0.

There are now two initial values, T0 and K0, to be determined, whereas there is only one
initial value, T0, in the original problem. Hence, one must bear in mind that the initial
capital stock K0 must be set to the optimal level (from the viewpoint of the producer)
rather than regard it as a free value.

4.2.2 Step 2: Derive Bellman equation

In the vein of Bellman’s Principle of Optimality, the dynamic optimization problem is
broken into simpler subproblems. For this goal, Eq. (14) should be modified such that
the value of plant is represented in terms of current profit and the future value of plant.
A starting point is to extract the first term from the series,

V
(
Tt, Kt

)
= max

(Ri)∞i=t,(Ii)
∞
i=t+1

e−r(Tt−Tt)
∫ Rt

0

e−rsO(Tt, s)ds

+ e−r(Tt+1−Tt)
(
− p(Tt+1)It+1 + θp(Tt+1)

e−δRtKt

q(Tt)

)
+

∞∑
i=t+1

(
e−r(Ti−Tt)

∫ Ri

0

e−rsO(Ti, s)ds

+ e−r(Ti+1−Tt)
(
− p(Ti+1)Ii+1 + θp(Ti+1)

e−δRiKi

q(Ti)

))
.

In Appendix F it is shown that using this, the Bellman equation of the problem can be
derived and it becomes,

V
(
Tt, Kt

)
= max

Rt,It+1

∫ Rt

0

e−rsO(Tt, s)ds (15)

+ e−rRt
(
− p(Tt+1)It+1 + θp(Tt+1)

e−δRtKt

q(Tt)
+ V (Tt+1, Kt+1)

)
.
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At this point it is possible to stop and use Eq. (15) in the second step 4.2.2. However,
the analysis is simplified by assuming Cobb-Douglas production technology in line with
Mukoyama (cf. assumption (iii)),

(v). O(Tt, s) = Ak(Tt, s)
α.

Using this, a simple integration give us the Bellman in which there are only two
exogenous functions p and q,

V
(
Tt, Kt

)
= max

Rt,It+1

AKα
t

1− e−(r+δα)Rt

r + δα
(16)

+ e−rRt
(
− p(Tt+1)It+1 + θp(Tt+1)

e−δRtKt

q(Tt)
+ V (Tt+1, Kt+1)

)
.

4.2.3 Step 3: Derive Euler equations

The Bellman equation is exploited in several ways in order to fully characterize the opti-
mal paths of control and state variables. From the envelope theorem one gets preliminary
result for the optimal paths of state variables. The envelope theorem10 applied to the
state variable Tt yields11,

∂

∂Tt
V (Tt, Kt) = e−rRt

(
− p′(Tt+1)It+1 + θp′(Tt+1)

e−δRtKt

q(Tt)
(17)

− θp(Tt+1)
e−δRtKt

q(Tt)2
q′(Tt) +

∂

∂Tt+1

V (Tt+1, Kt+1) +
∂

∂Kt+1

V (Tt+1, Kt+1)q′(Tt+1)It+1

)
.

Note that the dynamics of state variables, meaning Eqs. (13) and (12), are utilized when
calculating partial derivatives ∂

∂Tt+1
V (Tt+1, Kt+1) and ∂

∂Kt+1
V (Tt+1, Kt+1). Correspond-

ingly, the envelope theorem applied to the state variable Kt yields,

∂

∂Kt

V (Tt, Kt) = αAKα−1
t

1− e−(r+δα)Rt

r + δα
+ θe−rRtp(Tt+1)

e−δRt

q(Tt)
. (18)

The equations (17) and (18) are costate equations. The next goal is to derive Euler
equations for both control variables Rt and It. This can be done by using the first-order
conditions. Let us first deal with simpler case.

Euler equation of It The necessary condition for (interior) solution of the problem is
that partial derivative of control variable It+1 must vanish,

− e−rRtp(Tt+1) + e−rRt
∂

∂Kt+1

V (Tt+1, Kt+1)q(Tt+1) = 0

⇔ ∂

∂Kt+1

V (Tt+1, Kt+1) =
p(Tt+1)

q(Tt+1)
. (19)

10Milgrom and Segal showed that the differentiability of value function and objective function in
parameters is only required (Milgrom & Segal, 2002, [23]). In order to study the differentiability, some
restrictions must be imposed on functions p(t) and q(t). To avoid these questions, the differentiability is
just assumed. In light of Proposition 1 one has to only show that if f(t) denotes the objective function,
then

∑∞
n=1 f

′(t) converges uniformly on [0,∞[ when assumptions (vii) and (vi) hold.
11Note that due to the envelope theorem, we must not take into account the partial derivatives

∂Rt

∂Kt
,∂Rt

∂Tt
,∂It+1

∂Kt
and ∂It+1

∂Tt
.
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By lagging this equation by one period and inserting the result into Eq. (18) gives the
evolution of state variable Kt,

p(Tt)

q(Tt)
= αAKα−1

t

1− e−(r+δα)Rt

r + δα
+ θe−rRtp(Tt+1)

e−δRt

q(Tt)

⇔ Kt =

( p(Tt)
q(Tt)
− θe−rRtp(Tt+1) e

−δRt
q(Tt)

αA1−e−(r+δα)Rt

r+δα

) 1
α−1

. (20)

Using the dynamics of capital stock , it is immediate that the Euler equation of control
variable It+1 can be written as,

It+1 =
1

q(Tt+1)

( p(Tt+1)
q(Tt+1)

− θe−rRt+1p(Tt+2) e
−δRt+1

q(Tt+1)

αA1−e−(r+δα)Rt+1

r+δα

) 1
α−1

. (21)

Euler equation of Rt Then, Euler equation for the control variable Rt will be de-
rived. The idea is the following. From the first-order condition for Rt, the partial deriva-
tives ∂

∂Tt
V (Tt, Kt) and ∂

∂Tt+1
V (Tt+1, Kt+1) can be solved. Besides, the partial derivative

∂
∂Kt+1

V (Tt+1, Kt+1) is already solved. Thus, we can get rid of partial derivatives in the

costate equation. There will remain some terms that contain V (Tt, Kt) and V (Tt+1, Kt+1).
Those can be disposed by using Bellman equation. The derivation is given in full detail
in Appendix G, but here it is satisfied with an undetailed derivation.

The first-order condition for control variable Rt reads as,

AKα
t e
−(r+δα)Rt − re−rRt

(
− p(Tt+1)It+1 + θp(Tt+1)

e−δRtKt

q(Tt)
+ V (Tt+1, Kt+1)

)
+ e−rRt

(
− p′(Tt+1)It+1 + θp′(Tt+1)

e−δRtKt

q(Tt)
− δθp(Tt+1)

e−δRtKt

q(Tt)

+
∂

∂Tt+1

V (Tt+1, Kt+1) +
∂

∂Kt+1

V (Tt+1, Kt+1)q′(Tt+1)It+1

)
= 0.

From this, the partial derivatives ∂
∂Tt
V (Tt, Kt) and ∂

∂Tt+1
V (Tt+1, Kt+1) can be solved.

Inserting these and ∂
∂Kt+1

V (Tt+1, Kt+1) into the costate equation, we obtain after couple
of simplifications,

− AKα
t−1e

−δαRt−1 + r
(
− p(Tt)It + θp(Tt)

e−δRt−1Kt−1

q(Tt−1)
+ V (Tt, Kt)

)
+ p′(Tt)It − θp′(Tt)

e−δRt−1Kt−1

q(Tt−1)
+ δθp(Tt)

e−δRt−1Kt−1

q(Tt−1)
− p(Tt)

q(Tt)
q′(Tt)It

= e−rRt
(
− θp(Tt+1)

e−δRtKt

q(Tt)2
q′(Tt)− AKα

t e
−δαRt + δθp(Tt+1)

e−δRtKt

q(Tt)

+ r
(
− p(Tt+1)It+1 + θp(Tt+1)

e−δRtKt

q(Tt)
+ V (Tt+1, Kt+1)

))
.

To get rid of the value functions appearing in the equation, the maximized Bellman
equation should be exploited. The maximized Bellman equation is the original Bellman
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equation (16) given that controls are chosen optimally (in that case the maximal operator
disappears). After using this and doing several simplifications, we achieve our goal. The
Euler equation of control variable Rt is characterized by the root (roots) of the function
G,

G(Tt, Rt, Rt+1)
def
= r

(
AKα

t+1

1− e−(r+δα)Rt+1

r + δα
− p(Tt+1)It+1 + θp(Tt+1)

e−δRtKt

q(Tt)

)
(22)

− AKα
t e
−δαRt + p′(Tt+1)It+1 − θp′(Tt+1)

e−δRtKt

q(Tt)
+ δθp(Tt+1)

e−δRtKt

q(Tt)

− p(Tt+1)

q(Tt+1)
q′(Tt+1)It+1 − e−rRt+1

(
− θp(Tt+2)

e−δRt+1Kt+1

q(Tt+1)2
q′(Tt+1)

− AKα
t+1e

−δαRt+1 + δθp(Tt+2)
e−δRt+1Kt+1

q(Tt+1)

)
= 0.

This is a first-order non-linear difference equation in variable Rt. Even if p and q have a
simple form, the existence of analytical solution is very unlikely. Three initial values T0,
K0 and R0 have to be first determined. The initial value R0 is needed since the difference
equation is of the first-order. Unfortunately, there is no obvious candidate for that. The
initial value can be obtained, for example, by solving a system12 of first N recursive
relations and approximating the last replacement interval by Rt+N+1 ≈ Rt+N . Given
that R0, T0 and K0 are known, an optimal replacement policy can be solved recursively
by solving the positive root of the function G for variable Rt+1 at all times Tt. Recall
that from the state equation of variable Tt, Eq. (13), the variable Tt can be derived by
induction,

Tt = T0 +
t−1∑
i=0

Ri, for t ∈ {1, 2, 3, ...} and T0 is given.

The determination of initial values T0 and K0 is not so problematic. A natural choice is
to set T0 = 0 whereas the value of K0 should be computed as noted in the subsection
4.2.1. Meaning that the initial capital stock must be at the optimal level in the sense of
Eq. (20). So, K0 can be calculated if R0 and T0 are known.

4.3 Investment-specific technological change: Two approaches

The model incorporates two approaches to model investments-specific technological change.
Therefore, it provides a framework in which the comparison among these approaches is

12In order to calculate N optimal replacement intervals, it amounts to solve a system of N equations:

G(Tt, Rt, Rt+1) = 0

G(Tt+1, Rt+1, Rt+2) = 0

.

.

G(Tt+N−1, Rt+N−1, Rt+N ) = 0

The problem of an unknown initial value R0 can be avoided by adding extra equations into the system
and then approximating the last replacement interval by Rt+x+1 ≈ Rt+x.

16



possible. Particularly, the comparison can be done with respect to the effect they have
on the replacement decision and depreciation. The actual comparison is conducted in
Section 5.

Two closely related approaches to describe investment-specific technological change
can be found from the literature. The first approach describes investments-specific techno-
logical change in terms of prices. The investment-specific technological progress can be de-
scribed as a fall in the price of capital (e.g. Greenwood et al., 1997, [5]; Mukoyama, 2008,
[2]; Hulten, 1992, p.967, [24]). The second approach describes investment-specific techno-
logical progress as a growth in the relative productivity of new capital (e.g. Deli,2016,p.323,[18];
Greenwood et al., 1997, [5]; Justiano et al., 2010, [25]). Greenwood et al. (1997) and
Hulten (1992) both give a comprehensive discussion about how these two descriptions of
investment-specific technological change are related to each other. Greenwood et al. show
in their framework how the price and the productivity of new capital are inversely related
(Greenwood et al., 1997, p.361, [5]). Several authors have made similar observation (e.g.
Hulten, 1992, p.967, [24]; Bakhshi & Larsen, 2001, p.15, [26]).

Inspired by these two interpretations of investment-specific technological change, it
will be studied how they are related in this framework. Specifically, how they are related
with respect to the effect they have on the replacement decision and depreciation. The
model incorporates counterparts of these two. The quantity p(Tt) describes the unit
price of capital (measured in one unit of output) at time Tt. On the other hand, q(Tt)It
describes an (efficient) amount of just installed capital stock at time Tt. Hence q(Tt) can
be interpreted as the productivity of a new (vintage) capital at time Tt, or as Hulten put
it: ”the index Φ(t) [in our context q(t)] can be interpreted as the best-practice level of
technology in year t, and the change in Φ(t) can be interpreted as the quality differential
between successive vintages” (Hulten, 1992, p.966, [24]). Let us focus on the case in
which the productivity grows and the price falls, both at a constant rate. That is, q
and p are assumed to follow exponential functions with parameters λ and γ respectively

(vi). q(t) = eλt, where λ ≥ 0

(vii). p(t) = eγt, where γ ≤ 0

Parameters λ and γ can be interpreted as annual growth rates of the productivity of new
capital and the price of capital13. Note that the assumptions (vii) is same as Mukoyama’s
assumption (viii) up to the sign of parameter γ. The rest of the thesis it is assumed that
assumptions (vi) and (vii) hold, unless stated otherwise.

4.4 The existence of a solution and the second-order condition

The existence of a solution and the second-order condition are briefly examined. The
concluding answer to the existence is given in Proposition 3 in the next section.

13Recall that ex = limn→∞

(
1 + x

n

)n
. This corresponds to an annual growth rate of x when growth

rates are compounded continuously.
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4.4.1 The existence

The convergence of the series is necessary for the existence question to be even reasonable.
The following proposition guarantees the convergence of the series in the case θ = 0.

Proposition 1. If θ = 0, δ > 0 and r > (γ − λ) α
α−1

, then the present value of the plant
is finite for all14replacement and investment policies, (Ri, Ii+1)∞i=t.

Proof. It is enough to show that the claim holds for an optimal replacement and invest-
ment policy. Namely, the series given an optimal replacement and investment policy is a
upper bound for all other series. That is, for θ = 0 we show that the series (14) converges
when r > (γ − λ) α

α−1
and sequences (Ri)

∞
i=t are (Ii)

∞
i=t+1 optimally chosen. Let assume

that θ = 0. Then i-th term of the series is,

e−r(Ti−Tt)
∫ Ri

0

e−rsO(Ti, s)ds− e−r(Ti+1−Ti)p(Ti+1)Ii+1.

By using assumptions (v) - (vii), the optimality of investments (21), and the optimality
of capital stock (20), the i-th term becomes,

1

r + αδ
Aer(Tt−Ti)

(
1− e−(r+αδ)Ri

)( (r + αδ)e(γ−λ)Ti

αA (1− e−(r+αδ)Ri)

) α
α−1

− e(γ−r−λ)Ri+(γ−r−λ)Ti+rTt

(
(r + αδ)e(γ−λ)(Ti+Ri)

αA (1− e−(r+αδ)Ri+1)

) 1
α−1

.

The first term of this can be represented as a factor,

Cie
−rTi

(
e(γ−λ)Ti

) α
α−1 = Cie

(
(γ−λ) α

α−1
−r
)
Ti .

Similarly, the second term can be rewritten as,

Die
(γ−λ−r)Ti

(
e(γ−λ)Ti

) 1
α−1 = Die

(
(α−1)(γ−λ)

α−1
+ γ−λ
α−1
−r
)
Ti = Die

(
(γ−λ) α

α−1
−r
)
Ti .

Here, the factors Ci and Di depend only on constants and replacement interval Ri (note
that Tt is a given initial time),

Ci
def
=

1

r + αδ
AerTt

(
1− e−(r+αδ)Ri

)( r + αδ

αA (1− e−(r+αδ)Ri)

) α
α−1

,

Di
def
= e(γ−r−λ)Ri+rTt

(
(r + αδ)e(γ−λ)Ri

αA (1− e−(r+αδ)Ri+1)

) 1
α−1

.

To wrap up, i-th term of the series can be presented as,

e

(
(γ−λ) α

α−1
−r
)
Ti
(
Ci −Di

)
.

14A replacement policy that leads to negative plan present value is treated as an inadmissible policy.
Inadmissible policies are excluded.
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Now, consider a ratio,

e

(
(γ−λ) α

α−1
−r
)
Ti
(
Ci −Di

)
e

(
(γ−λ) α

α−1
−r
)
Ti

= Ci −Di.

Since δ > 0 we can assume that the optimal (Ri)
∞
i=t is bounded15. Since Ri > 0 for all i,

together these imply that either (Ri)
∞
i=t oscillates between finite bounds or (Ri)

∞
i=t has a

finite limit (e.g. in the case (Ri)
∞
i=t is monotonic). It easy to see (Ci−Di can be regarded

as a bounded function of Ri and Ri+1) that then the ratio either oscillates between finite
bounds or it has a finite limit. In any case we have,

lim sup
i→∞

(
Ci −Di

)
<∞.

On the other hand, by the assumption r > (γ − λ) α
α−1

⇔ (γ − λ) α
α−1
− r < 0 we know

that the following series converges,

∞∑
i=t

e

(
(γ−λ) α

α−1
−r
)
Ti < ∞

since16 Ti = Tt +
∑i

j=tRj −→ ∞ as i → ∞. By the one-sided version of the limit

comparison test17, the original series (14) converges.

The condition δ > 0 is not necessary. However, if λ = 0 = γ, then δ > 0 is necessary
for the existence. The reason is that if there were neither investment-specific technological
change nor physical depreciation, then there would not be any incentive to replace capital
stock at all. On the other hand, the condition r > (γ − λ) α

α−1
is a necessary condition

for the existence. In fact, along with δ > 0, λ > or γ < 0, it also constitute a sufficient
condition for the existence. This is show in Proposition 3. The condition r > (γ − λ) α

α−1

may seem a bit peculiar at first sight, but recall this is due to the exclusion of the budget
constraint. The condition ensures that the discounted profits do not grow too rapidly,
because there is available interest-free loan in the financial markets.

4.4.2 The second-order condition

To check the sufficient condition for the maximum, the Hessian matrix of the function
determined by the right-hand side of BellmanEquation must be studied. It is straight-
forward to exclude the possibility of a local minimum.

15Otherwise, there is nothing to prove. To get an idea of this, assume that there does not exist N > 0
such that |Ri| < N for all i. Then it can be found i such that Ri is arbitrary large. Since δ > 0, after
time Ti the plant output is (virtually) zero due to capital stock is physically worn out. Hence, the present
value of plant is finite.

16Technically, it is needed that (Ri)
∞
i=t decreases at most at rate 1

n , i.e. 1
n = O(Rn). Since θ = 0

this should be the case. Otherwise within a fixed time frame, the scrapping cost would increase without
bounds and thus contradicts with the assumption that (Ri)

∞
i=t is an optimal.

17Let (xn) and (yn) be non-negative sequences. If lim sup
n→∞

xn

yn
∈ [0,∞[ and

∑∞
n=t yn converges, then

necessarily
∑∞
n=t xn converges
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Recall that the first derivative with respect to control variable It+1 reads as,

− e−rRtp(Tt+1) + e−rRt
∂

∂Kt+1

V (Tt+1, Kt+1)q(Tt+1).

After differentiating this second time with respect to It+1, we obtain

e−rRt
∂

∂Kt+1∂It+1

V (Tt+1, Kt+1)q(Tt+1).

By using the forwarded version of Eq. (18), we get

e−rRt(α− 1)αAKα−2
t+1

1− e−(r+δα)Rt+1

r + δα
q2(Tt+1) < 0,

which is negative since (α− 1) < 0 and other terms are positive. Thus one of the diago-
nal elements of the Hessian is negative, implying that the critical point cannot be a local
minimum, hence it is a local maximum or a saddle point (provided that the Hessian is
non-singular).

5 Effects of an investment-specific technological change

on the replacement decision and depreciation

This section presents some implications of the model on the replacement decision and
capital depreciation. The key results are: (i) the stationarity of the replacement pol-
icy (Proposition 3), (ii) the equivalence in that whether investment-specific technological
progress is described as a fall in the price of capital or as a growth in the relative produc-
tivity of new capital (Proposition 4) and (iii) the intensification of capital replacement
due to an acceleration in investment-specific technological progress (Proposition 5). Fur-
ther, two results shown by Mukoyama (2008) are verified in this general setting. First,
the replacement decision is independent of an initial time (cf. Proposition 1 in Mukoyama
(2008) and Proposition 2). Second, the producer replaces capital more frequently when
a fall in the price of capital accelerates (cf. Proposition 3 in Mukoyama (2008) and
Proposition 6) (Mukoyama, 2008, [2]).

5.1 The replacement decision

The difference equation G, which characterizes the optimal replacement, is rather com-
plex. By following Mukoyama and assuming that θ = 0, it possible to derive various
analytical results concerning the model. This assumption is posed due to analytical
convenience and the case θ > 0 is studied numerically in subsection 5.4.

The following proposition guarantees that the optimal replacement policy is indepen-
dent of an initial time. The result has relevance on its own right, but it primarily serves
as a stepping stone in showing other results.

Proposition 2. Assume that θ = 0. If (Ri, Ii+1)∞i=0 is an optimal replacement and
investment policy for some initial time T0, then the function G is independent of time Tt.
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Proof. For given T0, assume that (Ri)
∞
i=0,(Ii)

∞
i=0 and (Ki)

∞
i=0 satisfy Eq. (22), Eq. (21) and

Eq. (20), respectively. We show that the function G vanishes in the region [0,∞[×{Rt}×
{Rt+1}. Specifically, it is shown that a function defined by F (x)

def
= G(x,Rt, Rt+1) vanishes

in [0,∞[ at all periods t ∈ {0, 1, 2, ...}.
Fix period t ∈ {0, 1, 2, 3, ...} and assume that an initial time T0 ≥ 0 is arbitrary. Note

that Tt is determined by Tt = T0 +
∑t

i=0Ri for given replacement policy (Ri)
∞
i=0. First,

it holds that F (Tt) = G(Tt, Rt, Rt+1) = 0, since Rt and Rt+1 are chosen optimally. We
wish to extend this result into positive reals [0,∞[.

Suppose that θ = 0. After substituting the expressions It, Kt, q and p, it is possible
to directly differentiate the function G with respect to Tt. In Appendix H it is shown
that partial derivative ∂

∂Tt
G can be represented in terms of the function G and parameter

values α, γ and λ,

∂

∂Tt
G = (γ − λ)

α

α− 1
G. (23)

Note that this means F ′(x) = cF (x), where c
def
= (γ − λ) α

α−1
, since a straightforward

computation gives,

F ′(x) =
∂

∂x
G(x,Rt, Rt+1) = (

∂

∂Tt
G)(x,Rt, Rt+1)

= (γ − λ)
α

α− 1
G(x,Rt, Rt+1) = (γ − λ)

α

α− 1
F (x).

Then, assume that x ≥ Tt and deduce,

F ′(x) = cF (x) ⇒ e−cxF ′(x)− ce−cxF (x) = 0 ⇒ Dx

(
e−cxF (x)

)
= 0

⇒
∫ x

Tt

Ds

(
e−csF (s)

)
ds = 0 ⇒ e−cxF (x) = e−cTtF (Tt).

Since F (Tt) = 0, it holds that F (x) = 0 for all x ≥ Tt. In the case 0 ≤ x < Tt just note

that we have −
∫ x
Tt
Ds

(
e−csF (s)

)
ds = 0 and similarly deduce that F (x) = 0. Thus we

conclude that F (x) = 0 for all x ∈ [0,∞[.

Proposition 2 (in our context) is essentially equivalent to Proposition 1 that appears
in Mukoyama (Mukoyama, 2008, p.516, [2]). From Proposition 2, it follows that the
stationary replacement policy is a solution to the replacement problem, when a particular
transcendental function has a root.

Lemma 1. Assume that θ = 0. There exists a replacement interval R such that a constant
sequence Rt = R for all t is an optimal replacement policy, if and only if, R is a root of
the transcendental function H,

H(R)
def
= e−(αδ+(γ−λ) α

α−1
)R − α(r + δ + λ− γ)

r + αδ
e−(r+αδ)R − r − α(r + λ− γ)

r + αδ
. (24)

Proof. The optimal replacement policy is characterized by the roots of function G. Propo-
sition 2 implies that functions G(Tt, Rt, Rt+1) and G(0, Rt, Rt+1) have identical roots in
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variables Rt and Rt+1. Thus, for the existence of stationary solution, it has to be the
case that there exists R > 0 such that G(0, R,R) = 0. By substituting investments It,
capital stocks Kt, investment-specific technological change q and capital prices p, it can
be shown that this is equivalent to (see Appendix I),

Ae((γ−λ) α
α−1

)R

(
e−(αδ+(γ−λ) α

α−1
)R − α(r + δ + λ− γ)

r + αδ
e−(r+αδ)R − r − α(r + λ− γ)

r + αδ

)
= 0.

Lemma 1 plays the crucial role in the forthcoming analysis. This due to the fact that
the function H fully characterizes the stationary replacement policy. On the other hand,
Lemma 1 has a negative implication. It is very unlikely that there exists a closed-form
solution for variable R, because there does not exist a general method for solving this
type of transcendental equation. The existence and the uniqueness of the stationary
replacement policy can be shown by studying the function H. This is the content of
Proposition 3.

Proposition 3. Assume that θ = 0, r > (γ − λ) α
α−1

and either one holds δ > 0, λ > or
γ < 0. Then, there exists a unique replacement interval R such that a constant sequence
Rt = R for all t is an optimal replacement policy.

Proof. Suppose that δ > 0, λ > or γ < 0, then αδ + (γ − λ) α
α−1

> 0. Further, assume
that r > (γ − λ) α

α−1
. Together these justify the following calculation,

∂H

∂R
= α(r + δ + λ− γ)e−(r+αδ)R − (αδ + (γ − λ)

α

α− 1
)e−(αδ+(γ−λ) α

α−1
)R < 0

⇔ R >
log α(r+δ+λ−γ)

αδ+(γ−λ) α
α−1

r − (γ − λ) α
α−1

def
= R∗.

Hence, the function H is strictly decreasing on ]R∗,∞[ and strictly increasing on ]0, R∗[.

On the other hand, we have H(R∗) > 0 since H(R∗) > H(0) = 1 − α(r+δ+λ−γ)
r+αδ

−
r+α(γ−λ−r)

r+αδ
= 0. Since lim

R→∞
H(R) = − r+α(γ−λ−r)

r+αδ
< 0, for large enough R′ it holds

that H(R′) < 0. By the Bolzano’s theorem, there exits R ∈]R∗,∞[ such that H(R) = 0.
Furthermore, the root is unique since H is monotonic on ]R∗,∞[ and R = 0 is not valid
root because it is not an applicable replacement policy.

To guarantee the time-independence of the replacement policy, is no longer needed
a kind of mechanical assumption (ii) that was imposed on a functional form of capital
stock in Mukoyama’s model (2008). The time independence of the replacement policy is
an inherent result of the model due to increasing investments (21) in the presence of an
investment-specific technological growth. That is, the producer reacts to a steady growth
of investment-specific technology by accommodating investments alone, not replacement
policy. The situation is totally different when there is going on a change in growth rate
of investment-specific technological change. In that case, as soon it will turn out (see
Proposition 6), the producer also accommodates replacement policy.

There is a need for the bounds for variable R due to the lack of a closed-form solution.
The following lemma has a technical advantage when conducting comparative statics, as
well, it gives a reference point on constructing approximation for variable R.
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Lemma 2. Assume that θ = 0, r > (γ−λ) α
α−1

and either one holds δ > 0, λ > or γ < 0.

Then, the optimal replacement policy satisfies −
log

r−α(r+λ−γ)
r−(γ−λ) α

α−1

(αδ+(γ−λ) α
α−1

)
< R < − log

r−α(r+λ−γ)
r+αδ

(αδ+(γ−λ) α
α−1

)
.

Proof. From the optimality condition H(R) = 0 we get,

α(r + δ + λ− γ)e−(r+αδ)R = (r + αδ)e−(αδ+(γ−λ) α
α−1

)R − r − α(γ − λ− r), (25)

which implies that ∂H
∂R

takes a form (substitute Eq. (25) into ∂H
∂R

),

(r + αδ)e−(αδ+(γ−λ) α
α−1

)R − r − α(γ − λ− r)− (αδ + (γ − λ)
α

α− 1
)e−(αδ+(γ−λ) α

α−1
)R

=
(
r − (γ − λ)

α

α− 1

)
e−(αδ+(γ−λ) α

α−1
)R − r − α(γ − λ− r)

On the other hand, as shown in Proposition 3, it must hold ∂H
∂R

< 0 at the optimal R.
That is, at ∂H

∂R

∣∣
R s.t H(R)=0

it holds,

∂H

∂R
< 0 ⇔ log

(
r − (γ − λ)

α

α− 1

)
− (αδ + (γ − λ)

α

α− 1
)R < log

(
r − α(r + λ− γ)

)
⇔ R >

1

−(αδ + (γ − λ) α
α−1

)
log

(
r − α(r + λ− γ)

r − (γ − λ) α
α−1

)
.

The upper bound can be derived from H(R) = 0. Then,

e−(αδ+(γ−λ) α
α−1

)R =
α(r + δ + λ− γ)

r + αδ
e−(r+αδ)R +

r − α(r + λ− γ)

r + αδ

⇔ e(r−(γ−λ) α
α−1

)R =
α(r + δ + λ− γ)

r + αδ
+
r − α(r + λ− γ)

r + αδ
e(r+αδ)R

Use the identity log(x+ y) = log(x) + log(1 + y
x
),

(r − (γ − λ)
α

α− 1
)R = log

(r − α(r + λ− γ)

r + αδ
e(r+αδ)R

)
+ log

(
1 +

α(r + δ + λ− γ)

r − α(r + λ− γ)
e−(r+αδ)R

)
The condition r > (γ − λ) α

α−1
implies r > α(r + λ− γ). Hence,

log
(

1 +
α(r + δ + λ− γ)

r − α(r + λ− γ)
e−(r+αδ)R

)
> 0

⇒ −(αδ + (γ − λ)
α

α− 1
)R > log

(r − α(r + λ− γ)

r + αδ

)
⇔ R < −

log
(
r−α(r+λ−γ)

r+αδ

)
(αδ + (γ − λ) α

α−1
)

Even the first iteration of Newton’s method with the initial guess that equals to
the upper bound in Lemma 2, would provide a quite accurate estimate for variable R.
Alternatively, for nicer expression but not so accurate, the average of bounds can be
taken as a rough estimate for variable R (when θ = 0),

−
log (r−α(r+λ−γ))2

(r+αδ)(r−(γ−λ) α
α−1)

2
(
αδ + (γ − λ) α

α−1

) . (26)

23



5.2 Effects of I-S technology on the replacement decision

Thus far, a few desirable features of the model has been established. From this ground,
it can be proceeded to study how a change in the growth rate of the price of capital or a
change in the growth rate of productivity of new capital would affect on the replacement
decision. How these two approaches of modeling investment-specific technological change
are related? When scrapped capital stock has no value, then the answer is unambiguous.

Proposition 4. Suppose that scrapped capital stock has no value, that is θ = 0. Then,
an one unit increase in λ or an one unit decrease in γ have identical effect on the optimal
replacement interval R.

Proof. By looking the function H in Lemma 1, it can be seen that parameters λ and −γ
are in symmetric relation in the sense that if one denotes a = γ − λ, then H is not a
function of λ or −γ, but only a function of a.

Greenwood et al. (1997) writes ”...movements in q can be interpreted in two different
ways. First, 1/q could be thought of as representing the cost of producing a new unit of
equipment [in contrast to structure type of capital] in terms of final output...” (Greenwood
et al., 1997, [5]). When the productivity and the price of capital evolves according
(vi) and (vii), then Proposition 4 gives a formal proof to support this interpretation in
our context. To see this, note that 1/q(t) = e−λt and p(t) = eγt. By Proposition 4,
∂R/∂γ = −∂R/∂λ = ∂R/∂(−λ), thus 1/q = p with respect to the effect they have
on the replacement interval. Nevertheless, this not the whole truth. If one assumes
that scrapped capital stock has some value, that is θ > 0, then it turns out that the
the productivity and the price change in capital goods do not have identical effect on
replacement decision. This observation is made in numerical analysis (see subsection
5.4).

Still, it should be figure out what is an actual effect of I-S technological change on
the replacement problem. Mukoyama (2008) showed18 that the optimal R is increasing
in γ when θ = 0 and (r + αγ/(1− α))R > 1 (Mukoyama, 2008, [2]). Therefore one may
anticipate that this kind of result should also hold in more general setting. In fact this is
the case, which is shown in Proposition 6. In light of Proposition 4, it can be proceeded
by showing first the claim for parameter λ.

Proposition 5. Assume that θ = 0, r > (γ − λ) α
α−1

and either one holds δ > 0, λ > or
γ < 0. Then, the optimal replacement policy R is decreasing in λ, if
R > (1− α)1−e−(r+αδ)R

r−α(r+λ−γ)
.

Proof.

∂H

∂λ
=

α

α− 1
Re−(αδ+(γ−λ) α

α−1
)R − α

r + αδ
e−(r+αδ)R +

α

r + αδ

18The precise formulation is: ”Suppose that θ = 0 and T < ∞. The optimal T is decreasing in γ, if
(r − αγ/(1− α))T > 1.” (Mukoyama, 2008, p.518, [2]). In our context T=R and instead of p(t) = e−γt

we have p(t) = eγt.
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By exploiting the upper bound appearing in Lemma 2,

∂H

∂λ
<

α

α− 1
R
(r − α(r + λ− γ)

r + αδ

)
− α

r + αδ
e−(r+αδ)R +

α

r + αδ

=
αe−(r+αδ)R

(r + αδ)(α− 1)︸ ︷︷ ︸
-

(
α(e(r+αδ)R − 1) + 1 + e(r+αδ)RR(r − α(r + λ− γ))− e(r+αδ)R︸ ︷︷ ︸

+

)

The last term is positive, if and only if, R > (1−α)1−e−(r+αδ)R

r−α(r+λ−γ)
. Note that r > (γ−λ) α

α−1

implies r − α(r + λ− γ) > 0, meaning that the bound is positive.
We have shown that ∂H

∂λ
< 0. By looking the proof of Proposition 3, it is immediate

that ∂H
∂R

< 0. From the implicit function theorem,

dR

dλ
= −

∂H
∂λ
∂H
∂R

< 0

Remark. Alternatively, it can be directly shown from the expression of ∂H
∂λ

that
dR
dλ
< 0 ⇔ R > 1−α

r+αδ
e(γ−λ) α

α−1
R
(
eαδR − e−rR

)
Proposition 6. Assume that θ = 0, r > (γ − λ) α

α−1
and either one holds δ > 0, λ > or

γ < 0. Then, the optimal replacement policy R is increasing in γ, if
R > (1− α)1−e−(r+αδ)R

r−α(r+λ−γ)
.

Proof. The result readily follows from Proposition 4 and Proposition 5.

Due to the transcendental nature of the function H, it is difficult to derive a nice
expression that serves as a sufficient condition or as a necessary condition. The condition
R > (1 − α)1−e−(r+αδ)R

r−α(r+λ−γ)
is the sufficient condition, but not the necessary condition. The

necessary (and the sufficient) condition R > 1−α
r+αδ

e(γ−λ) α
α−1

R
(
eαδR− e−rR

)
seems to hold19

in all reasonable parameter combinations. When θ > 0, it not so clear whether parameters
λ and γ have positive or negative effect on R. A quantitative study (see subsection 5.4)
supports the view that Proposition 5 and Proposition 6 also hold in that case.

The effects of investment-specific technological change have been examined until now.
How does neutral technological change impact on the replacement decision? To answer
comprehensively this question, some modifications20 has to be made to the model. How-
ever, it is clear that the level of Total Factor Productivity (TFP) does not have an effect
on the replacement problem.

Proposition 7. Assume that θ = 0. The optimal replacement policy R is independent
of A.

19A quantitative inspection shows that the condition seems to hold for all reasonable parameter com-
binations. For instance, the condition holds for all parameter combinations appearing in subsection
5.4.

20For instance, the Cobb-Douglas production assumption must be changed to O(Tt, s) = A(Tt +
s)k(Tt, s)

α, where A(t) is now a function of time t.
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Proof. This is a direct consequence of Lemma 1, since the function H does not depend
on the value of A.

The growth in the productivity of new capital and the decline in the price of capital
both generate an opportunity cost when capital replacement is delayed. Delaying the
replacement amplifies an incentive to replace capital stock, since there are available grad-
ually more productive capital in the capital markets over time. In the case of declining
capital prices, this means that there are available physically in perfect shape capital in
the markets perpetually in cheaper prices. On the contrary, the change in the level of
TFP does not generate an opportunity cost concerning the replacement decision. The
reason is that TFP affects the productivity of the existing capital as well. Hence, TFP
has no effect on the timing of the replacement. However, from Eq. (21) it can be seen
that TFP increases the level of investments.

5.3 Depreciation rate

One way to think how the replacement problem is related to depreciation, is to identify
the replacement policy with the retirement distribution in National Accounts. Recall
that predominately used method of determining capital stock in National Accounts en-
compasses two stages in which the life of investments are determined (see Sec.2.2 with
Sumit Dey & Chowdhuty, ONS, 2008, [6] and SNA, 2008, p.124, [8]). The first is the
determination of investment life length by means of the retirement distribution. The
second is the determination depreciation of investment over its lifetime by means of the
depreciation function. Replacement interval Rt at time Tt can be identified21 with (degen-
erated) retirement distribution of investment at time Tt. In other words, the life-length
of capital that is installed at time Tt is Rt. The depreciation function in this case is a
geometric depreciation function given by e−δt. Nevertheless, in our framework at plant
level there is no capital accumulation as it appears in Perpetual Inventory Method (i.e.
capital stock is a sum of depreciation corrected investments). Conventional methods to
calculate depreciation rate may not apply. However, by considering an economy with
multiple plants, depreciation rate can be computed ”on average”. The derivation of a
depreciation formula by Mukoyama is drawn upon this idea.

Mukoyama proposes that depreciation and the frequency of capital replacement are
related to each other through the formula (6) (Mukoyama, 2008, [2]). In general case,
the depreciation rate cannot be calculated by this formula due to two reasons. Firstly,
the replacement of capital may not occur at same rate in every period. Mukoyama makes
this type of steady-state assumption (Mukoyama, 2008, [2], p.518). Secondly, if the
assumption (ii) is relaxed, which concerns the determination of capital stock, then terms
k(·, ·) have to be replaced somehow. However, a formula that is fitting in more general
context can be found by slightly modifying Mukoyama’s formula.

5.3.1 Non-stationary depreciation rate

The replacement of capital may not occur at same rate every period. This can be the
case whenever the evolution of I-S technological change deviates from those determined

21If θ = 0, then the retirement distribution of investment at time Tt can be identified with Dirac delta
measure δ on [Tt,∞] with the property that δ({Tt +Rt}) = 1 and zero otherwise.
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in the assumptions (vi) and (vii). For instance, assuming p(t) = 1 and q(t) = eλt + 0.1t
does the job. This implies that the depreciation rate has to be determined as a function
of (continuous) time t. The immediate problem we run into here is that from the plant
optimization problem, only a discrete set of optimal choices can be obtained. That is, the
replacement and investment policy, (Ri, Ii, Ki)

∞
i=0, is known at a discrete points in time,

T0, T1, T2, ... On contrary, continuous paths of t 7→ R(t), t 7→ I(t) and (t, s) 7→ k(t, s)
are needed. For instance, consider the integrator k(t − s, s) in Mukoyama’s formula
(6). To evaluate this, it is required to known the whole path of (t, s) 7→ k(t − s, s).
The underlying reason for this problem is that there is going on a transition from a
”microeconomic capital stock” to ”macroeconomic capital stock” when trying to derive
a formula for depreciation. The formula for depreciation rate introduced by Mukoyama
is ”economy-wide” (in the sense of the aggregation of homogeneous plants), not ”plant
specific” such as other quantities derived from the underlying framework are. Therefore,
one must deduce from the investment decision (Ii)

∞
i=0 of a plant, how otherwise identical

plants but in different timing cycle decide their optimal investment paths t 7→ I(t). The
path t 7→ R(t) should be first determined by solving the Euler equation of the variable
Rt for all non-negative initial values. That is, one should solve 22 for all non-negative
T0 ≥ 0. The obtained

(
R(t)

)
t≥0

extends (Ri)
∞
i=0 from N0 onto [0,∞] such that R(Tt) = Rt

for all t. Given the path of the optimal replacement times
(
R(t)

)
t≥0

, the investments can

be extended onto positive real line (see Appendix J),

I(t) =
1

q(t)

( p(t)
q(t)
− θe−rR(t)p(t+R(t)) e

−δR(t)

q(t)

αA1−e−(r+δα)R(t)

r+δα

) 1
α−1

. (27)

Correspondingly, the capital stock can be continuously determined as,

k(t, s) = e−δs

( p(t)
q(t)
− θe−rR(t)p(t+R(t)) e

−δR(t)

q(t)

αA1−e−(r+δα)R(t)

r+δα

) 1
α−1

.

Let us follow Mukoyama by assuming that the economy is in the steady-state in the
sense that a number of plants is a constant. Then, the plant age distribution follows the
uniform distribution U(0, R(t)) at time t. The capital stock terms have to be modified
in similar fashion as the term (10) is modified. The terms of the form k(t− s, s) must be

replaced by k(t−s,s)
q(t−s) . The rationale was given in Appendix D. Further, it may be convenient

to switch the timing when depreciation is evaluated, from the beginning of the period
[t, t + R(t)] (i.e. t) to the end of the same period (i.e. t + R(t)). Taking account these
changes in Mukoyama’s formula (6), the depreciation rate d at time t can be calculated
as (see Appendix K),

d(t) =

(1− θ)k(t, R(t))

q(t)∫ R(t)

0

k(t+R(t)− s, s)
q(t+R(t)− s)

ds

+ δ.
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Since k(t, s) = e−δsq(t)I(t), this can be equivalently written in terms of investments,

d(t) =
(1− θ)e−δR(t)I(t)∫ R(t)

0

e−δsI(t+R(t)− s)ds
+ δ. (28)

The determination of the path
(
R(t)

)
t≥0

is computationally inconvenient due to the fact

that it is implicitly defined by the family of non-linear difference equations: G(T0, Rt, Rt+1) =
0 for all T0. Therefore, one may be satisfied with an approximation for R(t). From the nu-
merical point of view, a spline interpolation is an easy solution. Even a liner interpolation
in every sub-period u ∈ [Tt, Tt +Rt] gives rather good approximation,

R(u) =
Rt+1 −Rt

Rt

u+Rt +
Rt+1 −Rt

Rt

Tt. (29)

5.3.2 Stationary depreciation rate

Let us now assume that the evolution of I-S technological change is described by the
assumptions (vi) and (vii). Then by Proposition 3, it is known that Rt = R for all t,
when it is further assumed that θ = 0. Let us presume that Proposition 3 holds even
if θ > 0 - from the numerical results (see subsection 5.4) this assumption seems to be
plausible. What it can be say about t 7→ R(t)? Proposition 2 excludes the possibility
R(u) 6= Rt when u ∈ [Tt, Tt+1], since t 7→ R(t) is characterized by the function G.
Therefore, R(t) is a constant R, and the formula (28) takes a form,

d(t) =
(1− θ)e−δRI(t)∫ R

0

e−δsI(t+R− s)ds
+ δ.

Now, the determination of paths (t, s) 7→ k(t, s) or t 7→ I(t) is not a problem. Since

R(t) = R, a new function can be just defined by I(t)
def
= It/R that extends the optimal

investment sequence (21) onto reals [0,∞[. Assumption T0 = 0 implies that Tt = tR by
Eq. (13). Using these observations, it is shown in Appendix L that the formula simplifies
to an expression, which is independent of a time t,

d =
(1− θ)(δ + αλ−γ

1−α )

e(δ+αλ−γ
1−α )R − 1

+ δ. (30)

The formula (30) corresponds to Mukoyama’s formula of depreciation (6) (Mukoyama,
2008, p.518, [2]). They are equivalent except an inclusion of additional term αλ in the
formula (30). The appearance of the term αλ is due to the fact that investment-specific
technological change is incorporated into the model in two ways. After rewriting the
formula more concisely,

d =
(1− θ)φ′

eφ′R − 1
+ δ, where φ′

def
= δ +

αλ− γ
1− α

, (31)

it can be seen that the formulas (31) and (6) are identical up to redefining22 φ as φ′ =
δ+ (αλ−γ)/(1−α). An intriguing fact is that parameter λ is multiplied by α whereas γ

22Note that the sign of γ is reversed, because of p(t) = e−γt in the Mukoyama’s model.
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is not in the formula. Due to an exponential in the denominator, this seems to imply that
λ has a greater direct effect on depreciation rate than γ, although this should be verified
numerically. The effect of λ on depreciation approaches the effect of −γ on depreciation,
as α approaches 1. Thus, when θ = 0 and α is close to one, p and 1/q have almost identical
effect on depreciation rate (recall Proposition 4). The fact, that the effect of q on capital
depreciation heavily depends on production technological parameter α, enlightens how q
intrinsically reflects technological aspect of capital depreciation whereas this is not only
aspect that p reflects.

The interpretation of Mukoyama’s (2008) formula (6) also applies to the formula (31).
Mukoyama note that ”the first term is determined endogenously” by the replacement de-
cision (Mukoyama, 2008, p.519, [2]). Conversely, the second term is due to the physical
depreciation, and hence it is exogenous with respect to the producer’s decision. Endoge-
nous part is negatively related to R, because it always holds that φ′ > 0. By Proposition
5 and Proposition 6 this seems to imply that when λ increases or γ decreases, endogenous
part increases, consequently d increases. However, d also directly depends on parameter
values λ and γ, hence the decisive effect should be verified quantitatively. This is one of
the objectives in the next subsection, and it will be also confirmed that d is increasing in
λ and decreasing in γ.

Finally, the results are compared to those of Greenwood et al. (Greenwood et al.,
1997, [5]). The formula proposed by Greenwood et al., (2), can be represented (after
some algebra) as d = (∆qt/qt)(1− δ) + δ. Thus, the endogenous part of the formula (6)
corresponds to (∆qt/qt)(1− δ) when q growths at a steady constant rate (i.e. (vi) holds).
If one approximates (∆qt/qt) ≈ q′(t)/q(t) = λ, then the difference between depreciation
rates implied by the formulas equals to,∣∣∣(1− θ)(δ + αλ

1−α)

e(δ+ αλ
1−α )R − 1

− λ(1− δ)
∣∣∣,

which is actually quite small. For instance, when r = 0.056, α = 1/3, δ = 0.04, θ = 0 and
λ = 0.03, then the difference is only 0.0082, that is, obsolescence is misestimated about
0.8%.

5.4 Numerical analysis

There are still a few unanswered questions. How producer would react, if some of the value
of scrapped capital stock was rebated? To answer this, it should be studied what would
be the effect of investment-specific technological when parameter θ is strictly positive.
The second question is what is the relationship of the generalized model to Mukoyama’s
(2008) model. How well the results of two models coincide? The third question concerns
the relationship of physical depreciation to obsolescence. Which one is more substantial:
physical depreciation or obsolescence? The questions are studied quantitatively. When-
ever different parameter profiles are considered, one should bear in mind the condition
for the convergence posed in Proposition 1 in order to avoid pathological results.

The first concern is that whether the optimal replacement policy is still independent
of an initial time and whether it is stationary. This turns out to be the case, after a
number of quantitative experiments were conducted by varying parameter profiles. This
suggest that Proposition 2 and Proposition 3 may also hold when θ > 0. From now
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on, all the result concerning the optimal replacement policy can be presented by one
number R (which corresponds to T in Mukoyama (2008)) since R = Rt for all t. In
light of Proposition 7, an expected results is that TFP would not have effect on the
replacement decision even if θ > 0. In fact, this is the case. TFP has only effect on the
optimal investment policy and on the value of the plant. This means that there are no
”free parameters” that can be used for calibration purposes in contrast23 to Mukoyama’s
model. Based on this, it can be argued that the implications of the generalized model
are not so model specific.

The parameter values are matched to yearly data such that these are as close as
possible to those used by Mukoyama. The parameter A is the only one which can differ
due to reason just explained. Since the value of A does not matter, it is set to neural value
A = 1. The results remain same for all choices A > 0. The interest rate and the share of
capital in production function are set to r = 0.056 and α = 1/3 in line with Greenwood
and Yorukoglu (Greenwood at al, 1997, [5]; Greenwood & Yorukoglu, 1997, [27]). The
rest of parameters, λ and γ concerning investment-specific technological change as well
as δ and θ concerning depreciation of capital stock, are varied according the question at
hand.

To compare the results with those obtained by Mukoyama, the tables 3 and 4 that
appear in Mukoyama (2008) are reproduced in Table 1 and in Table 2, respectively (cf.
Mukoyama, 2008, p.520, [2]). In Mukoyama’s model the dependence of parameter A along
with the fact that it was used to calibration, complicates the comparison. Especially, the
levels of replacement interval R and depreciation rate d differ a lot between the models
due to the calibration. However, in both models, R and d react similarly to the change
in parameters γ, θ and δ. To sum up, as expected from previous considerations (cf.
Proposition 1 and Proposition 3 with Mukoyama’s (2008) results), the qualitative features
of the models coincide, but the levels of variables differ.

Table 1 (corresponds to Table 3 in Mukoyama (2008))
Results with α = 1/3, δ = 0

R (years) d (%)
θ = 0.3 (A > 0) γ = -0.03 37.3 0.72

γ = -0.05 24.7 0.98
θ = 0.7 (A > 0) γ = -0.03 29.2 0.50

γ = -0.05 19.3 0.69

Table 2 (corresponds to Table 4 in Mukoyama (2008))
Results with α = 1/3, θ = 0.5

R (years) d (%)
δ = 0.02 (A > 0) γ = -0.03 24.7 2.82

γ = -0.05 18.1 3.04
δ = 0.04 (A > 0) γ = -0.03 19.5 5.00

γ = -0.05 15.2 5.22

23Mukoyama assumes that ”The value of A is picked so that before the change in γ, d is 10%.”
(Mukoyama, 2008, p. 7, [2])
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How results would differ if investment-specific technological change was described
differently? Instead of assuming that there is a steady fall in the price of capital, that is
γ < 0, let us assume that the productivity of a new unit of capital grows at a steady-rate
λ > 0. In the light of Proposition 4, one may expect that when changing parameters
γ or λ, there should be an identical effect on replacement interval R. Surprisingly, this
not true when θ > 0. Too see this, let us set parameter values to those in Table 2 with
the exception of γ = 0 and λ > 0. Table 3 illustrates the effect of λ on replacement
interval R and depreciation d. The ratio of obsolescence to depreciation is also reported.
When comparing Table 2 and Table 3, it can be observed that parameter λ has a greater
effect on the replacement decision than parameter γ. The underlying reason is that when
scrapped capital stock has some value, then the change in the price of capital causes two
opposing effects for the optimal R as discussed in Mukoyama (Mukoyama, 2008, p.518,
[2]). He writes,

”First, when γ is large [in our context −γ is small], the loss of
the old capital’s value is faster. Therefore, the marginal cost of
waiting is high, and there is an incentive for firm to sell the old
capital earlier, before it loses value. Second, the value of the old
capital after (given) T [in our context R] time period is smaller.
Therefore, the revenue from selling the old capital is less impor-
tant, and firm is willing to wait longer.”.

These two opposing effects exist due to the term θp(Ti+1) e
−δRiKi
q(Ti)

in the objective function.

The term can be written as θp(Ti+1)e−δRiIi, when it is easy to note that q is related to
this term only through investments Ii. That explains why q and p (hence λ and γ) are
not in a symmetric relation with respect to the replacement decision whenever θ > 0.
The intuition behind is that there is no aforementioned ”second effect” when λ is positive
and γ is zero, that is when only the productivity of a new unit of capital grows. After
given R time period, the revenue from selling the old capital is not less important.

Table 3
Results with α = 1/3, θ = 0.5, γ = 0

R (years) d (%) d−δ
d

(%)
δ = 0.02 (A > 0) λ = 0.03 21.3 3.58 44.11

λ = 0.05 15.6 4.21 52.52
δ = 0.04 (A > 0) λ = 0.03 17.5 5.71 29.89

λ = 0.05 13.4 6.34 36.92

There also exits an issue concerning the relationship of p with q. Typically, prices are
endogenously determined (at least in the general equilibrium context) whereas technology
is treated as an exogenous process. Therefore, the price of capital can be viewed as a
function of I-S technology, that is p = p(t, q(t)). In that case, the situation in which
both q̇ > 0 and ṗ = 0 hold same time may not be possible. Recall that when θ = 0 and
the assumptions (vi) and (vii) hold, then 1/q(t) = p(t) in the sense of the effect they
have on replacement frequency (see Proposition 4). Therefore, it is interesting study how
replacement frequency reacts if the price of capital is determined by I-S technological
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change, particularly by the inverse relation p = 1/q (note that this is equivalent to
the assumption λ = −γ) when θ > 0. This is illustrated in Table 4. Event though
depreciation rates are in higher level than in Table 3, the relative increase is small. The
effect is not additive with respect to parameters λ and γ. For instance, −γ = λ = 0.5
yields much lower depreciation rate than λ = 0.1.

Table 4
Results with α = 1/3, θ = 0.5, λ = −γ

R (years) d (%) d−δ
d

(%)
δ = 0.02(A > 0) λ = 0.03 14.8 3.77 46.98

λ = 0.05 10.1 4.52 55.77
δ = 0.04 (A > 0) λ = 0.03 12.8 5.93 32.57

λ = 0.05 9.2 6.69 40.19

Finally, the last question is addressed. Which one is more substantial: physical de-
preciation or obsolescence? The proportion of obsolescence to (total) depreciation varies
a lot among different scenarios. For instance, the ratio of obsolescence to depreciation
varies from 30% to 56% in Tables 3 and 4. The sample mean is 42%, hence physical
depreciation seems to be slightly more substantial than obsolescence in contrast to some
studies (e.g. Sakellaris & Wilson, 2004, p.3-4, [4]). However, the answer depends heavily
on factors of the context such as a type of industry, a type of capital and so on. For exam-
ple, in ICT sector physical depreciation rates and the growth of I-S technological progress
may differ much from more traditional sectors. To study this more closely, parameters
are matched to yearly data of the United Kingdom ICT sector. Following Bakhshi and
Larsen, δ and α are set to 0.239 and 0.02824, respectively (Bakhshi & Larsen, 2001,[26]).
The steady-state growth rate of investments-specific technological change is set to 18.9%.
The results are reported for both cases, either γ = −0.189 or λ = 0.189. Since there are
no available data for θ, two different scenarios are considered, either θ = 0 or θ = 0.3.
Typically, disposed ICT assets have very low market value, thus θ = 0 can be regarded
as a reasonable benchmark case. The results are summarized in Table 5. The ratio of
obsolescence to depreciation varies from 20.79% to 33.87%, while the sample mean being
27.21%. It can be again concluded that physical depreciation seems to be more sub-
stantial than obsolescence. However, the conclusion depends heavily on the estimates of
parameter δ. For example, if physical depreciation is set to a lower value δ = 0.1, then
obsolescence explains over a half of depreciation given the parameters in the first line of
Table 5. So, the question arise whether high physical depreciation estimate δ = 0.239
also includes obsolescence?

24The low estimate for capital share α does not affect on results. The results remain almost same
when it is chosen α = 1/3 (and r = 0.1).
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Table 5
Results with α = 0.028, δ = 0.239

R (years) d (%) d−δ
d

(%)
θ = 0 (A > 0) λ = 0.189 4.5 36.14 33.87

γ = -0.189 4.5 31.12 23.21
θ = 0.3 (A > 0) λ = 0.189 3.9 34.61 30.95

γ = -0.189 4.1 30.17 20.79

A few general observations can be made based on the results of the quantitative ex-
ercises. First, an increase in the value of scrapped capital stock, that is in θ, accelerates
the replacement of capital, that is R. Intuitively this is clear because the absolute cost of
replacement is lower (the rebate of scrapped capital is higher) for higher values of θ, thus
leading to more frequent capital replacement. Yet, the effect of θ on depreciation d is not
so evident. There are two opposing channels: higher θ decreases R, hence increases d, on
the other hand, higher θ decreases the loss generated by scrapping (scrapped capital is
more valuable) at the moment of replacement, hence decreases d. The second observation
is that physical depreciation accelerates capital replacement. This is an expectable out-
come since higher δ leads to faster physical depreciation of existing capital stock, hence
faster fall in the productivity of existing capital stock, resulting a higher incentive to
producer replace earlier. The effect is more prominent what it comes to depreciation d,
because in addition to indirect impact through R, δ also increases d directly.

In summary, based on the quantitative study it is likely that all Propositions 1 -
7 except Proposition 5 would hold even if θ > 0. Mukoyama’s (2008) model and the
generalized model have similar qualitative features, but the levels of variables implied
by the models differ. The proportion of obsolescence to depreciation depends heavily
on parameter values, especially on the value of physical depreciation. A few illustrative
scenarios are studied, and the proportion of physical depreciation is slightly greater than
the proportion of obsolescence in most of the cases. However, if physical depreciation
is relative low with respect to I-S technological change, then obsolescence will be more
substantial than physical depreciation.

6 Implications of the model: the law of motion for

capital

In this section it is briefly studied how the results fit into a broader context of macroe-
conomic modeling. Especially, it is considered how investments-specific technological
change can be taken into account in the law of motion for capital. In a world with
investment-specific technological change, the following form25 of the law of motion for
capital is commonly found in the macroeconomic literature (e.g. Fisher, 2006,[21]; Deli,
2016, [18]; Greenwood et al., 1988 & 1997, [16] & [5]),

K̇(t) = q(t)I(t)− d(t)K(t), (32)

25The continuous time counterpart is considered here.
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where variables have standard meanings. That is, K(t) and I(t) denote aggregate capital
stock and aggregate investment, respectively, at time t. Depreciation rate at time t is
denoted by d(t) and I-S technological level at time t is denoted by q(t).

There arise two questions concerning the rate of depreciation: ”What does the value
of d should reflect in this context and how it should be determined?”. To answer these,
the underlying idea will be to exploit the analogy of PIM method to the law of motion
for capital. Then, it will be argued in favor of Mukoyama’s interpretation on these
questions. Mukoyama applies the depreciation formula (6) in the law of motion for
capital (Mukoyama, 2008, p.520, [2]). This implies (in order the application to be valid)
that d should reflect both physical depreciation and obsolescence, as well as the formula
for depreciation, which is derived from the replacement problem, is appropriate in that
context.

The discrete time version of the law of motion for capital closely relates to Perpetual
Inventory Method. From the discrete version26 of Eq. (32) it is easy to show by induction
that (given the convention

∏t
i=t+1(1− di) = 1),

Kt+1 =

( t∏
i=0

(1− di)
)
K0︸ ︷︷ ︸

”depreciation corrected initial capital”

+
t∑

j=0

( t∏
i=j+1

(1− di)
)
qjIj︸ ︷︷ ︸

”depreciation corrected investment flows”

. (33)

This resembles PIM method introduced earlier. In fact, Eq. (33) leads to exactly same
equation as PIM method (1), if it is assumed that qi = 1 for all i and di = dj for all
i, j. Again, this corresponds to the case in which there is no I-S technological change
and depreciation is a constant over time. Nevertheless, there is a profound difference
between PIM method (1) and the law of motion for capital. When it is assumed that
qi = 1 for all i, it can be seen that depreciation rates (di)

t
i=0 relate to investments (of

different vintages) (Ii)i=0 quite differently in Eq. (1) than in Eq. (33). In PIM method,
di affects only on investment Ii, hence it reflects ”the rate of depreciation of the capital
of vintage i”. On contrary, investment Ii is evenly affected by all depreciation rates up to
period i in the law of motion for capital. Thus, depreciation rates are not vintage specific
but rather they reflect an inter-temporal variation of ”general” depreciation across all
vintages of capital. In Hill’s terms (1999), only ”cross section depreciation” is included
in PIM method, but the law of motion for capital also includes the second component
of ”time series depreciation”, that is the ”revaluation term” (Hill, 1999, [10]). Cross
section depreciation and the revaluation term correspond to physical depreciation and
obsolescence, respectively (Hill, 1999, [10],p.11). From that viewpoint, d in the law of
motion for capital, (33), should also include obsolescence.

Why PIM method interpreted as Eq. (1) does not include ”the revaluation term”,
that is obsolescence? The reason is that obsolescence is differently captured in PIM
method, namely it is modeled by the retirement distribution. Recall that the retirement
distribution is excluded in the formula (1). Based on this, it will be argued that the
exclusion of obsolescence in the law of motion for capital is more or less analogous to
that the retirement distributions is ignored in Perpetual Inventory Method.

Let us assume that depreciation can be decomposed into physical depreciation and

26That is Kt+1 = (1− dt)Kt + qtIt.
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obsolescence, and the information about I-S technological change entirely determines27

obsolescence. In that case the fact qi = 1 for all i (that is, there is no I-S technological
change) implies that deprecation is exclusively resulted from physical depreciation, that
is di = δi for all i. Therefore, instead of assuming di = dj for all i, j, it can be equivalently
assumed that δi = δj for all i, j. Now, recall that Eq. (1) and Eq. (33) are equal whenever
di = dj and qi = 1. The conclusion is that: if physical depreciation is a constant over
time (e.g. due to investments are homogeneous and utilization rates does not vary) and
there is no obsolescence (since there is no I-S technological change), then Kt, which
is determined by the law of motion for capital, can be equivalently characterized by
PIM method in which depreciation function is geometric and retirement distribution is
excluded. Therefore, the exclusion of obsolescence in the law of motion for capital is more
or less analogous to that the retirement distributions is ignored in PIM method.

Until now, it is argued that obsolescence should be included in the law of motion for
capital. The second question concerns the determination of d. There is an interesting im-
plication due to the analogy of obsolescence and the retirement distribution. Namely, the
information about the replacement policy is precisely what is needed in order to obsoles-
cence would be appropriately captured, because the replacement policy can be identified
with the retirement distribution as discussed in subsection 5.3. From that ground, the
replacement problem appears as a natural approach to the determination of depreciation.
The replacement problem is addressed in Sections 4 - 5 and some assumptions are im-
posed along the way. There is the assumption of Cobb-Douglas production technology
(see (v)), an assumption of that tthe interest rate is ”sufficiently” high relative to I-S
technological change (see Proposition 1)28 and a kind of steady-state assumption (in the
sense that a number of plants is a constant in the economy). Given that these assump-
tions hold, the introduced formula for depreciation, (28), can be used in the law of motion
for capital in line with Mukoyama (Mukoyama, 2008, p.520, [2]). For simplicity, let us
confine ourselves in the case that scrapped capital stock has no value (θ = 0). Then, by
substituting Eq. (27) into Eq. (28) and after some simplifications due to θ = 0, the law
of motion for capital can be described as,

K̇(t) = q(t)I(t)− d(t)K(t)

s.t.


d(t) =

e−δR(t)q(t)
α

1−α

(
p(t)

1− e−(r+δα)R(t)

) 1
α−1

∫ R(t)

0
e−δsq(t+R(t)− s)

α
1−α

(
p(t+R(t)− s)

1− e−(r+δα)R(t+R(t)−s)

) 1
α−1

ds

+ δ

t 7→ R(t) is determined by the family of difference equations :

G(T0 +
∑t−1

i=0 Ri, Rt, Rt+1) = 0, for all T0 ∈ [0,∞]

.

Equivalently, if θ > 0, then the depreciation rate can be described by Eqs. (27) and (28)

27This assumption in our framework can be formulated as: ”q′ = 0 implies θ = 1”. This is a plausible
assumption since θ does not reflect physical depreciation and by the depreciation formula (28), it can be
seen that depreciation equals to physical depreciation in that case.

28For general p and q, the condition r > (γ − λ) α
α−1 may be insufficient. However, the condition is

still appropriate, if the following asymptotic results hold:

lim
t→∞

q(t)

eλt
= 0 and lim

t→∞

eγt

p(t)
= 0
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together with the function G.
What if one decides to determine I-S technological change exclusively by q? Then

the interpretation of p is not so evident. This closely relates to the issue concerning the
relationship of p with q discussed earlier. Due to the endogenity of prices (at least in
the general equilibrium context), the price of capital can be thought as a function of I-S
technology, that is p(t) = p(t, q(t)). Furthermore, the function is typically decreasing
with respect to q, that is ∂p

∂q
< 0. A potential candidate for the function p is the inverse

relation, p = 1/q, which is supported by Proposition 4 when θ = 0 and by several studies
(e.g. Greenwood et al., 1997, [5]; Hulten, 1992, [24]; Bakhshi & Larsen, 2001, [26]).
Therefore, one may assume that p = 1/q, which leads to the following description of the
law of motion for capital in which there is no explicit mention of the price of capital,

K̇(t) = q(t)I(t)− d(t)K(t)

s.t.


d(t) =

e−δR(t)q(t)
1+α
1−α
(
1− e−(r+δα)R(t)

) 1
1−α∫ R(t)

0
e−δsq(t+R(t)− s)

1+α
1−α
(
1− e−(r+δα)R(t+R(t)−s)) 1

1−αds

+ δ

the family of difference equations (G̃T0)T0∈[0,∞] determines t 7→ R(t)

, (34)

where G̃T0 is derived from the function G in Appendix M,

G̃T0(Rt, Rt+1)
def
=
r + αδe−(r+δα)Rt+1

r + δα
−
(
r +

2q′(Tt +Rt)

q(Tt +Rt)

)
(1− e−(r+δα)Rt+1)α

r + αδ

−
(

(1− e−(r+δα)Rt)q(Tt)
2

(1− e−(r+δα)Rt+1)q(Tt +Rt)2

) α
1−α

e−δαRt = 0,

where Tt is determined by Tt = Tt−1 +Rt−1.
The determination of the path of t 7→ R(t) appears to be a tedious task. However, at

the cost of accuracy, we can rest on a linear interpolation of (Rt)
∞
t=0 as proposed earlier.

In that case, the difference equation G̃0(Rt, Rt+1) = 0 must be solved, and then Eq. (29)
can be used to obtain t 7→ R(t).

For illustrative purpose, let us consider the following economic environment. There is
a steady growth in I-S technology, say it grows about at rate λ per year, but there is no
neutral technological change. The price of capital is also reflected on the progress of I-S
technology, say the price of capital falls about at rate λ per year. Scrapped capital has
no value, the rate of physical depreciation δ is known and the interest rate29 r satisfies
r > 2λα

1−α , where α is the share of capital in production. Then, by Lemma 1 and Formula
(30), the law of motion for capital can be described as,

K̇(t) = eλtI(t)− dK(t)

s.t.

d =
δ+ 1+α

1−αλ

e
(δ+1+α

1−αλ)R−1
+ δ

e−(αδ− 2αλ
α−1

)R − α(r+δ+2λ)
r+αδ

e−(r+αδ)R − r−α(r+2λ)
r+αδ

= 0
.

Here, deprecation d is a constant over time, because I-S technology has a simple evolution
(a steady exponential growth). In that case the value of d can be just calculated and
then substituted into the law of motion for capital. However, if the evolution of I-S
technology was more complex or otherwise different, then d wouldn’t be necessary a
constant, consequently d must be determined by Eq. (34).

29The risk premium must be also included.
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7 Conclusion

Capital stock can be endogenized in Mukoyama’s (2008) model such that the stationarity
of the optimal replacement policy is retained. When the evolution of I-S technological
change deviates from a steady constant rate growth, then the optimal replacement policy
may not be stationary, which in turn implies non-stationary depreciation rate. It is
proposed a method for the determination of depreciation in that case. The determination
of non-stationary depreciation is computationally inconvenient. In stationary case, the
replacement policy can be easily determined. Even though there does not exist a closed-
from solution for the optimal replacement interval, it can be solved as a root of a relative
simple transcendental function. The corresponding (constant) depreciation rate can be
calculated by the formula that is equivalent to the formula proposed by Mukoyama (2008).
The only difference is that the change in the growth rate of the productivity of a new
capital is also taken into account.

I-S technological progress can described either as a fall in the price of capital or as
a growth in the relative productivity of new capital. From the viewpoint of the optimal
replacement policy, these approaches are equivalent as long as scrapped capital stock has
no value and I-S technological change grows at constant rate. An increase in the growth
rate of I-S technology, interpreted as an increase either in the growth of productivity or
in the fall of prices, leads to more frequent capital replacement. This in turn implies
higher depreciation due replacement (that is, higher obsolescence).

The adoption of the capital replacement problem for describing depreciation is a
promising approach. The major advantage is the consistency with the producers opti-
mization, hence the applicability of the results is easier to justify in a broader context.
In particular, it is argued that the depreciation rate can be applied in the law of motion
for capital that is almost ubiquitous in macroeconomics.

The model does not include labor and neutral technological change is not taken into
account. However, the results are robust to a number of parameters, in particular to
the level of neural technology (the parameter A). Physical depreciation seems to be a
substantial part of depreciation, hence the rate of depreciation depends heavily on the
estimate of physical depreciation. The existence of the replacement policy requires that
the interest rate must be ”sufficiently” high relative to I-S technological change. This
is because the budget constraint is not included. An important task that remains to be
done, is to include the budget constraint in order to get rid of the interest rate condition.
Further, an interesting future research topic is to study what is the impact of neutral
technological progress on the replacement decision, or does the inclusion of labor has an
effect on the optimal replacement policy.
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A Appendix: The derivation of Mukoyama’s model

Let assume that the producer maximizes the present value of its profits. The production
technology is described by the production function O(K(t, s)), which depends only on one
input, the amount of capital at time t whose age is s. The evolution of the capital stock
differs quite lot from standard characterization encountered in macroeconomics. Firstly,
there is no capital accumulation. When producer decides to replace its capital stock, it
is assumed that producer always invest in the frontier quality capital and the fraction θ
of existing capital stocks is retrieved back to the producer. Until next replacement, the
plant production is based on capital replaced in that period. Secondly, the producer has
only one control, to decide the frequency of capital replacement.

At first, a bit more general model is derived and then it is reduced back to the
Mukoyama’s (2008) model. The producer has to choose a sequence of times, when the
capital is replaced, say (Ti)

∞
i=1 = (T1, T2, T3, ...). Then the discounted output from the

period ]Tt, Tt+1], whose capital has been just installed, is defined by the formula,∫ Tt+1−Tt

0

e−rsO(Tt, s)ds =

∫ ∆Tt+1

0

e−rsO(Tt, s)ds, (35)

where r > 0 denotes a discount rate. At the end of the period, an investment in new
capital is exogenously given. Its cost to the producer is,

p(Tt+1)k(Tt+1, 0). (36)

On the other hand, the fraction θ of existing capital is retrieved back to the producer,

θp(Tt+1)k(Tt,∆Tt+1). (37)

Now, the terms (35)- (37) are exploited in presenting the replacement problem. The value
of plant at time t is denoted by a function V (t). The value of plant is determined by
the discounted flow of profits. Let us consider the value of plant at the beginning of the
period ]Tt, Tt+1], that is, at time Tt,

V (Tt) = max
{Ti}∞i=t+1

∞∑
i=t

(
e−r(Ti−Tt)

∫ ∆Ti+1

0

e−rsO(Ti, s)ds (38)

+ e−r(Ti+1−Tt)
(
− p(Ti+1)k(Ti+1, 0) + θp(Ti+1)k(Ti,∆Ti+1)

))
. (39)

Next, we modify the equation in such that the value of plant is represented in terms of
current profits and the future value of plant. Extract the first term from the series,

V (Tt) = max
{Ti}∞i=t+1

e−r(Tt−Tt)
∫ ∆Tt+1

0

e−rsO(Tt, s)ds

+ e−r(Tt+1−Tt)
(
− p(Tt+1)k(Tt+1, 0) + θp(Tt+1)k(Tt,∆Tt+1)

)
+

∞∑
i=t+1

(
e−r(Ti−Tt)

∫ ∆Ti+1

0

e−rsO(Ti, s)ds

+ e−r(Ti+1−Tt)
(
− p(Ti+1)k(Ti+1, 0) + θp(Ti+1)k(Ti,∆Ti+1)

))
.
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Observe that e−r(Tt−Tt) = 1 and e−r(Tt+1−Tt) = e−r∆Tt+1 ,

V (Tt) = max
{Ti}∞i=t+1

∫ ∆Tt+1

0

e−rsO(Tt, s)ds

+ e−r∆Tt+1

(
− p(Tt+1)k(Tt+1, 0) + θp(Tt+1)k(Tt,∆Tt+1)

)
+

∞∑
i=t+1

(
e−r(Ti−Tt)

∫ ∆Ti+1

0

e−rsO(Ti, s)ds

+ e−r(Ti+1−Tt)
(
− p(Ti+1)k(Ti+1, 0) + θp(Ti+1)k(Ti,∆Ti+1)

))
.

Note that eTt+2−Tt = eTt+2−Tt+1+Tt+1−Tt = eTt+2−Tt+1+∆Tt+1 , etc...

V (Tt) = max
{Ti}∞i=t+1

∫ ∆Tt+1

0

e−rsO(Tt, s)ds

+ e−r∆Tt+1

(
− p(Tt+1)k(Tt+1, 0) + θp(Tt+1)k(Tt,∆Tt+1)

)
+ e−r∆Tt+1

∞∑
i=t+1

(
e−r(Ti−Tt+1)

∫ ∆Ti+1

0

e−rsO(Ti, s)ds

+ e−r(Ti+1−Tt+1)
(
− p(Ti+1)k(Ti+1, 0) + θp(Ti+1)k(Ti,∆Ti+1)

))
.

Then, notice that the last two terms of the right-hand side are equal to the value of plant
at time Tt+1

30,

V (Tt) = max
∆Tt+1

∫ ∆Tt+1

0

e−rsO(Tt, s)ds

+ e−r∆Tt+1

(
− p(Tt+1)k(Tt+1, 0) + θp(Tt+1)k(Tt,∆Tt+1)

)
+ e−r∆Tt+1V (Tt+1).

In the Mukoyama’s model it is assumed that ”the economy is in the steady-state, in the
sense that... the replacement of capital occurs at same rate every period” (Mukoyama,
2008, p.518, [2]). In our framework that means there exists a constant T > 0 such that
∆Tt = T for all t. To see the identicality with Mukoyama’s (2008) model, denote t = Tt
and note that Tt+1 = Tt+1 − Tt + Tt = ∆Tt+1 + Tt = T + t. In that case the replacement
problem reads as,

V (t) = max
T

∫ T

0

e−rsO(t, s)ds+ e−rT
(
− p(t+ T )k(t+ T, 0) + θp(t+ T )k(t, T ) + V (t+ T )

)
.

30In the period Tt the producer has to choose Tt+1, that is same as to choose ∆Tt+1 for given Tt.
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B Appendix: An alternative solution of Mukoyama’s

model

The following question is studied: Would the Mukoyama’s model (2008) be still solvable
if some of assumptions (i)-(iv) were relaxed? The answer will be tentative yes. The result
foreshadows even greater relaxation of the assumptions that is taken in Section 4.

At this moment, it is only imposed some regularity conditions on the functional forms
of output, capital and capital price. More precisely, let’s relax assumptions (ii) - (iv) in
the following sense31

(viii). k(t, 0) ∈ C1(R+)

(ix). O(t, s) ∈ C(R2
+)

(x). p(t) ∈ C1(R+)

Our strategy is to convert the functional equation (3) into an ordinary differential
equation. It turns out that obtained ordinary differential equation is a first order linear
ODE, which is easy to solve. To convert the equation, we first notice that the necessary
condition for the existence of a local maximum in the right-hand side of the equation (3)
is that the derivative with respect to T should vanish,

0 =
∂

∂T

(∫ T

0

e−rsO(t, s)ds (40)

+ e−rT
(
V (t+ T )− p(t+ T )k(t+ T, 0) + θp(t+ T )k(t, T )

))
.

By the assumption (ix), a function e−rsO(t, s) is continuous on [0,∞[ in variable s.
Therefore, the Fundamental Theorem of Calculus guarantees,

∂

∂T

∫ T

0

e−rsO(t, s)ds = e−rTO(t, T ). (41)

Besides the second term takes a form,

∂

∂T

(
e−rT

(
V (t+ T )− p(t+ T )k(t+ T, 0) + θp(t+ T )k(t, T )

))
= −re−rT

(
V (t+ T )− p(t+ T )k(t+ T, 0) + θp(t+ T )k(t, T )

)
(42)

+ e−rT
(∂V (t+ T )

∂T
− ∂p(t+ T )

∂T
k(t+ T, 0)− p(t+ T )

∂k(t+ T, 0)

∂T

+ θ
∂p(t+ T )

∂T
k(t, T ) + θp(t+ T )

∂k(t, T )

∂T

)
.

Substitute Eqs. (41) and (42) into Eq. (40) and multiply by the factor erT to get,

rV (t+ T )− ∂V (t+ T )

∂T
= h(t, T ), (43)

31The class C1(X) consists of all continuously differentiable functions on a domain X
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where we denote,

h(t, T )
def
= O(t, T ) + rp(t+ T )k(t+ T, 0)

− ∂p(t+ T )

∂T
k(t+ T, 0)− p(t+ T )

∂k(t+ T, 0)

∂T

− θ
(
rp(t+ T )k(t, T )− ∂p(t+ T )

∂T
k(t, T )− p(t+ T )

∂k(t, T )

∂T

)
.

Let us clean a bit Eq. (43). First, notice that by the chain rule, the partial derivatives
can be represented as,32

∂V (t+ T )

∂T
=
∂(t+ T )

∂T

∂V

∂t
(t+ T ) = V ′(t+ T )

∂k(t+ T, 0)

∂T
=
∂(t+ T )

∂T

∂k

∂t
(t+ T, 0) =

∂k

∂t
(t+ T, 0)

∂k(t, T )

∂T
=
∂k

∂s
(t, T )

∂p(t+ T )

∂T
=
∂(t+ T )

∂T

∂p

∂t
(t+ T ) = p′(t+ T ).

Now, by the change of variables, x = t+ T , Eq. (42) can be represented as,

V ′(x)− rV (x) = −h(x− T, T ). (44)

This is just a linear first order ODE without an initial value condition V (x0)33. There
exists a solution if the function −h(x − T, T ) is continuous (in fact only integrability is
required). The assumptions (i) and (viii) - (x) guarantee the continuity of the function
−h(x−T, T ). Solving the ODE (44) is straightforward and we solve it by using standard
techniques.

The integrating factor is,

µ(x) = e
∫ x
x0

(−r)ds
= er(x0−x), i.e. µ′(x) = −rµ(x).

Multiply both sides of Eq. (44) by the integrating factor and rearrange terms to get,

µ(x)V ′(x)− rµ(x)V (x) = −µ(x)h(x− T, T )

⇔ µ(x)V ′(x) + µ′(x)V (x) = −µ(x)h(x− T, T )

⇒ ∂

∂x

(
µ(x)V (x)

)
= −µ(x)h(x− T, T ).

32The following notations are adopted:
∂k
∂t (t+ T, 0) = ∂k(t,s)

∂t

∣∣∣
(t,s)=(t+T,0)

∂k
∂s (t, T ) = ∂k(t,s)

∂s

∣∣∣
(t,s)=(t,T )

etc...
33x0 = t+ T0 = t+ 0 = t and the value V (t) is unknown
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Integrate both sides of the equation over the interval [x0, x],∫ x

x0

∂

∂z

(
µ(z)V (z)

)
dz = −

∫ x

x0

µ(z)h(z − T, T )dz

µ(x)V (x)− µ(x0)V (x0) = −
∫ x

x0

µ(z)h(z − T, T )dz.

to obtain,

V (x) =
µ(x0)V (x0)

µ(x)
− 1

µ(x)

∫ x

x0

µ(z)h(z − T, T )dz. (45)

Notice that µ(x0) = er(x0−x0) = 1. By substituting x = t+T back to the solution of V (x)
we get,

V (t+ T ) = V (t)erT − erT
∫ t+T

t

er(t−z)h(z − T, T )dz.

For optimal T , this equation can be substituted back to the original problem without
maximum operator, that is to equation,

V (t) =

∫ T

0

e−rsO(t, s)ds

+ e−rT
(
V (t+ T )− p(t+ T )k(t+ T, 0) + θp(t+ T )k(t, T )

)
.

And we obtain,

G(t, T )
def
=

∫ T

0

e−rsO(t, s)ds−
∫ t+T

t

er(t−z)h(z − T, T )dz (46)

− e−rTp(t+ T )k(t+ T, 0) + e−rT θp(t+ T )k(t, T ) = 0.

This equation, G(t, T ) = 0, characterizes the optimal replacement interval T . The result
is analogous to Mukoyama’s result (5) (Mukoyama, 2008, [2]). The main difference is that
in general case the solution is not necessarily stationary, that is, the solution depends on
time t. But now, it is not so clear whether the implicit equation (46) has a solution for
all reasonable parameter values and for all times t or whether the solutions is unique.

Since Eq. (46) is the solution to the model, the result can be verified easily. Mukoyama
calibrates his model and computes magnitude of effect on T when changing different pa-
rameter values. By assuming same functional forms (i.e. assumptions (i) - (iv)) and
setting same parameter values, one should get same results. Matlab exercise verifies that
results are same for parameter values described in tables 1-3 in Mukoyama’s paper.

C Appendix

Proposition.

(1− θ)k(t−T,T )
T∫ T

0
k(t−s,s)

T
ds

+ δ =
(1− θ)λ
eλT − 1

+ δ, where λ
def
= δ +

γ

1− α
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Proof. By the assumption (i) we have the following,

(1− θ)k(t−T,T )
T∫ T

0
k(t−s,s)

T
ds

=
(1− θ)k(t− T, T )∫ T

0
k(t− s, s)ds

=
(1− θ)e−δTk(t− T, 0)∫ T

0
e−δsk(t− s, 0)ds

.

By the assumption (ii) this becomes,

(1− θ)e−δTk(t− T, 0)∫ T
0
e−δsk(t− s, 0)ds

=
(1− θ)e−δT e

1
1−αγ(t−T )∫ T

0
e−δse

1
1−αγ(t−s)ds

=
(1− θ)e−δT e

1
1−αγ(t−T )∫ T

0
e−s(δ+

1
1−αγ)e

1
1−αγtds

=
(1− θ)e−δT e

1
1−αγ(t−T )(

− 1
δ+ 1

1−αγ
e−s(δ+

1
1−αγ)

)∣∣∣T
0
e

1
1−αγt

=
(1− θ)e−δT e

1
1−αγ(t−T )(

1
δ+ 1

1−αγ
− 1

δ+ 1
1−αγ

e−T (δ+ 1
1−αγ)

)
e

1
1−αγt

.

And by denoting λ
def
= δ + γ

1−α this simplifies to,

(1− θ)e−δT e
1

1−αγ(t−T )(
1

δ+ 1
1−αγ

− 1
δ+ 1

1−αγ
e−T (δ+ 1

1−αγ)
)
e

1
1−αγt

=
(1− θ)e−δT e(λ−δ)(t−T )(

1
λ
− 1

λ
e−Tλ

)
e(λ−δ)t

=
(1− θ)e−δT e(λ−δ)te−TλeTδ(

1
λ
− 1

λ
e−Tλ

)
e(λ−δ)t

=
(1− θ)e−Tλ(
1
λ
− 1

λ
e−Tλ

)
=

(1− θ)e−Tλ
1
λ
e−Tλ

(
eTλ − 1

) =
(1− θ)

1
λ

(
eTλ − 1

) =
(1− θ)λ
eTλ − 1

.

D Appendix

Let us deduce the value of capital stock, which is installed at time Tt, but evaluated at
time Tt+1. The value of capital stock equals to the value of investment p(Tt)It at time
Tt, further just calculate,

p(Tt)It = p(Tt)It
q(Tt)

q(Tt)
= p(Tt)

k(Tt, 0)

q(Tt)
.

At time Tt+1, the age of capital stock is Tt+1−Tt = ∆Tt+1. Moreover, the price of capital
has changed from p(Tt) to p(Tt+1). Thus, the value of capital stock, which is installed at
time Tt, but evaluated at time Tt+1 is,

p(Tt+1)
k(Tt,∆Tt+1)

q(Tt)
.

46



Furthermore, it is important to notice that besides the value of capital stock declines
due to physical depreciation (and possibly due to the decline of capital prices), the value
of capital stock also declines in the opportunity cost sense. At the time Tt+1 there is
available more productive capital in the capital markets due to the investment-specific
technological progress.

E Appendix

∂

∂s
k(t, s) = −δk(t, s)

⇔ ∂

∂s
k(t, s) + δk(t, s) = 0

⇔ eδs
∂

∂s
k(t, s) + eδsδk(t, s) = 0

⇔ ∂

∂s

(
eδsk(t, s)

)
= 0

⇔ 34

∫ s

0

∂

∂u

(
eδuk(t, u)

)
du = 0

⇔ eδsk(t, s)− k(t, 0) = 0

⇔ k(t, s) = e−δsk(t, 0)

Using the initial value condition k(Tt, 0) = q(Tt)It in (7), we have:

k(Tt, s) = e−δsq(Tt)It

F Appendix

The first term of the series can be extracted, so the series can be written in the form,

V
(
Tt, Kt

)
= max

(Ri)∞i=t,(Ii)
∞
i=t+1

{
e−r(Tt−Tt)

∫ Rt

0

e−rsO(Tt, s)ds

+ e−r(Tt+1−Tt)
(
− p(Tt+1)It+1 + θp(Tt+1)

e−δRtKt

q(Tt)

)
+

∞∑
i=t+1

(
e−r(Ti−Tt)

∫ Ri

0

e−rsO(Ti, s)ds

+ e−r(Ti+1−Tt)
(
− p(Ti+1)Ii+1 + θp(Ti+1)

e−δRiKi

q(Ti)

))}
.

34The fact, k(t, s) ≥ 0 for all (t, s), is exploited.
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Observe that e−r(Tt−Tt) = 1 and e−r(Tt+1−Tt) = e−rRt , which leads to,

V
(
Tt, Kt

)
= max

(Ri)∞i=t,(Ii)
∞
i=t+1

{∫ Rt

0

e−rsO(Tt, s)ds

+ e−rRt
(
− p(Tt+1)It+1 + θp(Tt+1)

e−δRtKt

q(Tt)

)
+

∞∑
i=t+1

(
e−r(Ti−Tt)

∫ Ri

0

e−rsO(Ti, s)ds

+ e−r(Ti+1−Tt)
(
− p(Ti+1)Ii+1 + θp(Ti+1)

e−δRiKi

q(Ti)

))}
.

Note that eTt+i−Tt = eTt+i−Tt+1+Tt+1−Tt = eTt+i−Tt+1+Rt , hence the series becomes,

V
(
Tt, Kt

)
= max

(Ri)∞i=t,(Ii)
∞
i=t+1

{∫ Rt

0

e−rsO(Tt, s)ds

+ e−rRt
(
− p(Tt+1)It+1 + θp(Tt+1)

e−δRtKt

q(Tt)

)
+ e−rRt

∞∑
i=t+1

(
e−r(Ti−Tt+1)

∫ Ri

0

e−rsO(Ti, s)ds

+ e−r(Ti+1−Tt+1)
(
− p(Ti+1)Ii+1 + θp(Ti+1)

e−δRiKi

q(Ti)

))}
.

Represent the maximum operator such that it is split into two parts,

V
(
Tt, Kt

)
= max

Rt,It+1

{∫ Rt

0

e−rsO(Tt, s)ds

+ e−rRt
(
− p(Tt+1)It+1 + θp(Tt+1)

e−δRtKt

q(Tt)

)
+ e−rRt max

(Ri)∞i=t+1,(Ii)
∞
i=t+2

{ ∞∑
i=t+1

(
e−r(Ti−Tt+1)

∫ Ri

0

e−rsO(Ti, s)ds

+ e−r(Ti+1−Tt+1)
(
− p(Ti+1)Ii+1 + θp(Ti+1)

e−δRiKi

q(Ti)

))∣∣∣∣Rt, It+1 are given

}}
.

Then, notice that the term enclosed by the second maximum operator is same as the
value of plant at time Tt+1 with initial capital Kt+1. We obtain,

V
(
Tt, Kt

)
= max

Rt,It+1

∫ Rt

0

e−rsO(Tt, s)ds

+ e−rRt
(
− p(Tt+1)It+1 + θp(Tt+1)

e−δRtKt

q(Tt)

)
+ e−rRtV (Tt+1, Kt+1).

48



Rearrange last terms. The replacement problem can be represented as Bellman equation,

V
(
Tt, Kt

)
= max

Rt,It+1

∫ Rt

0

e−rsO(Tt, s)ds

+ e−rRt
(
− p(Tt+1)It+1 + θp(Tt+1)

e−δRtKt

q(Tt)
+ V (Tt+1, Kt+1)

)
.

G Appendix

The first-order condition for the control variable Rt reads as,

AKα
t e
−(r+δα)Rt − re−rRt

(
− p(Tt+1)It+1 + θp(Tt+1)

e−δRtKt

q(Tt)
+ V (Tt+1, Kt+1)

)
+ e−rRt

(
− p′(Tt+1)It+1 + θp′(Tt+1)

e−δRtKt

q(Tt)
− δθp(Tt+1)

e−δRtKt

q(Tt)

+
∂

∂Tt+1

V (Tt+1, Kt+1) +
∂

∂Kt+1

V (Tt+1, Kt+1)q′(Tt+1)It+1

)
= 0.

From the first-order condition, the partial derivative ∂
∂Tt+1

V (Tt+1, Kt+1) can be solved.
After lagging the result by one period,

∂

∂Tt
V (Tt, Kt) = −AKα

t−1e
−δαRt−1 + r

(
− p(Tt)It + θp(Tt)

e−δRt−1Kt−1

q(Tt−1)
+ V (Tt, Kt)

)
+ p′(Tt)It − θp′(Tt)

e−δRt−1Kt−1

q(Tt−1)
+ δθp(Tt)

e−δRt−1Kt−1

q(Tt−1)
− p(Tt)

q(Tt)
q′(Tt)It.

Inserting these obtained forms of ∂
∂Tt
V (Tt, Kt) and ∂

∂Tt+1
V (Tt+1, Kt+1) and also ∂

∂Kt+1
V (Tt+1, Kt+1)

(Eq. (19)) into the costate equation of variable Tt, one gets a quite complex formula. But

it turns out that terms ±p(Tt+1)
q(Tt+1)

q′(Tt+1)It+1, ±p′(Tt+1)It+1 and ±θp′(Tt+1) e
−δRtKt
q(Tt)

cancels
out, which results a simpler formula,

− AKα
t−1e

−δαRt−1 + r
(
− p(Tt)It + θp(Tt)

e−δRt−1Kt−1

q(Tt−1)
+ V (Tt, Kt)

)
+ p′(Tt)It − θp′(Tt)

e−δRt−1Kt−1

q(Tt−1)
+ δθp(Tt)

e−δRt−1Kt−1

q(Tt−1)
− p(Tt)

q(Tt)
q′(Tt)It

= e−rRt
(
− θp(Tt+1)

e−δRtKt

q(Tt)2
q′(Tt)− AKα

t e
−δαRt + δθp(Tt+1)

e−δRtKt

q(Tt)

+ r
(
− p(Tt+1)It+1 + θp(Tt+1)

e−δRtKt

q(Tt)
+ V (Tt+1, Kt+1)

))
.

To get rid of the value functions appearing in the equation, the maximized Bellman
equation should be exploited. The maximized Bellman equation is the original Bellman
equation (16) given that controls are chosen optimally(in this case maximal operator
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disappears). From this, the difference of the discounted value of plant in two consequent
periods, V (Tt, Kt)− e−rRtV (Tt+1, Kt+1), is easy to compute35 and using this one obtains,

− AKα
t−1e

−δαRt−1 + rAKα
t

1− e−(r+δα)Rt

r + δα
+ re−rRt

(
− p(Tt+1)It+1 + θp(Tt+1)

e−δRtKt

q(Tt)

)
+ r
(
− p(Tt)It + θp(Tt)

e−δRt−1Kt−1

q(Tt−1)

)
+ p′(Tt)It − θp′(Tt)

e−δRt−1Kt−1

q(Tt−1)
+ δθp(Tt)

e−δRt−1Kt−1

q(Tt−1)
− p(Tt)

q(Tt)
q′(Tt)It

= e−rRt
(
− θp(Tt+1)

e−δRtKt

q(Tt)2
q′(Tt)− AKα

t e
−δαRt + δθp(Tt+1)

e−δRtKt

q(Tt)
)

)
+ re−rRt

(
− p(Tt+1)It+1 + θp(Tt+1)

e−δRtKt

q(Tt)

)
.

The terms re−rRt
(
− p(Tt+1)It+1 + θp(Tt+1) e

−δRtKt
q(Tt)

)
cancels out. After forwarding the

result by one period, we end up with the function G,

r

(
AKα

t+1

1− e−(r+δα)Rt+1

r + δα
− p(Tt+1)It+1 + θp(Tt+1)

e−δRtKt

q(Tt)

)
− AKα

t e
−δαRt

+ p′(Tt+1)It+1 − θp′(Tt+1)
e−δRtKt

q(Tt)
+ δθp(Tt+1)

e−δRtKt

q(Tt)
− p(Tt+1)

q(Tt+1)
q′(Tt+1)It+1

= e−rRt+1

(
− θp(Tt+2)

e−δRt+1Kt+1

q(Tt+1)2
q′(Tt+1)− AKα

t+1e
−δαRt+1 + δθp(Tt+2)

e−δRt+1Kt+1

q(Tt+1)

)
.

H Appendix

Assume that θ = 0. Then the function G read as,

G(Tt, Rt, Rt+1) = rAKα
t+1

1− e−(r+δα)Rt+1

r + δα
− rp(Tt+1)It+1 − AKα

t e
−δαRt

+ p′(Tt+1)It+1 −
p(Tt+1)

q(Tt+1)
q′(Tt+1)It+1 + e−(r+αδ)Rt+1AKα

t+1.

35

V
(
Tt,Kt

)
− e−rRtV (Tt+1,Kt+1) = AKα

t

1− e−(r+δα)Rt

r + δα
+ e−rRt

(
− p(Tt+1)It+1 + θp(Tt+1)

e−δRtKt

q(Tt)

)
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After substituting the expressions It, Kt, q and p into the previous equation and rear-
ranging the terms, the function G can be written as,

− Ae−αδRt
(

(αδ + r)eTt(γ−λ)

αA (1− eRt(−(αδ+r)))

) α
α−1

+

Ar

(
(αδ+r)e(γ−λ)(Rt+Tt)

αA(1−eRt+1(−(αδ+r)))

) α
α−1

αδ + r

+

αAδeRt+1(−(αδ+r))

(
(αδ+r)e(γ−λ)(Rt+Tt)

αA(1−eRt+1(−(αδ+r)))

) α
α−1

αδ + r

+ (γ − r − λ)e(γ−λ)(Rt+Tt)

(
(αδ + r)e(γ−λ)(Rt+Tt)

αA (1− eRt+1(−(αδ+r)))

) 1
α−1

.

Differentiating with respect to Tt, yields for all terms a coefficient (γ−λ) α
α−1

. Thus ∂
∂Tt
G

equals to,

− α(γ − λ)

(α− 1)(αδ + r)

(
A(αδ + r)e−αδRt

(
(αδ + r)eTt(γ−λ)

αA (1− eRt(−(αδ+r)))

) α
α−1

− Ar
(

(αδ + r)e(γ−λ)(Rt+Tt)

αA (1− eRt+1(−(αδ+r)))

) α
α−1

− αAδeRt+1(−(αδ+r))

(
(αδ + r)e(γ−λ)(Rt+Tt)

αA (1− eRt+1(−(αδ+r)))

) α
α−1

− (αδ + r)(γ − r − λ)e(γ−λ)(Rt+Tt)

(
(αδ + r)e(γ−λ)(Rt+Tt)

αA (1− eRt+1(−(αδ+r)))

) 1
α−1

)
.

It can be seen that the following equation holds,

∂

∂Tt
G = (γ − λ)

α

α− 1
G.

I Appendix

Suppose θ = 0. By Proposition 2 we can assume that Tt = 0. Further, by exploiting the
equation: Tt+1 = Tt +Rt, the function G reads as,

G(Rt, Rt+1) = rAKα
t+1

1− e−(r+δα)Rt+1

r + δα
− rp(Rt)It+1

− AKα
t e
−δαRt + p′(Rt)It+1 −

p(Rt)

q(Rt)
q′(Rt)It+1 + e−rRt+1AKα

t+1e
−δαRt+1
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Substituting the expressions of investment, capital stock, capital price and investment-
specific technological change and assuming that there exists R > 0 such that Rt = R =
Rt+1,

G(0, R,R) =

Ar

(
− (αδ+r)eR(γ−λ)

αA(e−R(αδ+r)−1)

) α
α−1

αδ + r
+

αAδe−R(αδ+r)

(
− (αδ+r)eR(γ−λ)

αA(e−R(αδ+r)−1)

) α
α−1

αδ + r

+ (γ − r − λ)eR(γ−λ)

(
− (αδ + r)eR(γ−λ)

αA (e−R(αδ+r) − 1)

) 1
α−1

− Ae−αδR
(
− αδ + r

αA (e−R(αδ+r) − 1)

) α
α−1

.

Divide the equation G(0, R,R) = 0 by
( −1
Aα(e−(r+αδ)R−1)

) α
α−1 ,

Ar
(
(αδ + r)eR(γ−λ)

) α
α−1

αδ + r
+
αAδe−R(αδ+r)

(
(αδ + r)eR(γ−λ)

) α
α−1

αδ + r

+ (γ − r − λ)(r + αδ)
1

α−1 e(γ−λ+ γ−λ
α−1

)R
( −1

Aα(e−(r+αδ)R − 1)

)−1

− Ae−αδR (αδ + r)
α
α−1 = 0.

Note that e(γ−λ+ γ−λ
α−1

)R
(

−1
Aα(e−(r+αδ)R−1)

)−1

equals toAαe((γ−λ) α
α−1

)R−Aαe((γ−λ) α
α−1
−(r+αδ))R.

After dividing the equation by −(r + αδ)
α
α−1 we conclude that,

Ae((γ−λ) α
α−1

)R

(
e−(αδ+(γ−λ) α

α−1
)R − α(r + δ + λ− γ)

r + αδ
e−(r+αδ)R − r + α(γ − λ− r)

r + αδ

)
= 0.

J Appendix

We know that the optimal investments at times (Ti)
∞
i=1 are given by Eq. (21),

It =
1

q(Tt)

( p(Tt)
q(Tt)
− θe−rRtp(Tt+1) e

−δRt
q(Tt)

αA1−e−(r+δα)Rt

r+δα

) 1
α−1

,

and the capital stock installed at time Tt whose age is s, is given by k(Tt, s) = e−δsq(Tt)It.
A quantity Tt+1 = Tt + Rt refers to coming capital replacement time, and hence for
arbitrary time t the counterpart of Tt+1 is t + R(t). The extension is based on the
assumption that investments t 7→ I(t) can determined by Eq. 21 outside of the set
R(Ti)

∞
i=0

Then, given the path of optimal replacement times
(
R(t)

)
t≥0

, the investments can be
extended onto positive real line,

I(t) =
1

q(t)

( p(t)
q(t)
− θe−rR(t)p(t+R(t)) e

−δR(t)

q(t)

αA1−e−(r+δα)R(t)

r+δα

) 1
α−1

.
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Correspondingly, the capital stock can be continuously determined as,

k(t, s) = e−δsq(t)I(t) = e−δs

( p(t)
q(t)
− θe−rR(t)p(t+R(t)) e

−δR(t)

q(t)

αA1−e−(r+δα)R(t)

r+δα

) 1
α−1

.

K Appendix

Mukoyama’s formula reads as,

d =
(1− θ)k(t−T,T )

T∫ T
0

k(t−s,s)
T

ds
+ δ.

The variable T corresponds to the function R(t) in our context,

d =
(1− θ)k(t−R(t),R(t))

R(t)∫ R(t)

0
k(t−s,s)
R(t)

ds
+ δ.

The terms of the form k(t − s, s) must be replaced by k(t,s)
q(t)

due to the same reason as
explained in the Appendix D,

d =
(1− θ)k(t−R(t),R(t))

q(t−R(t))
1

R(t)∫ R(t)

0
k(t−s,s)
q(t−s)

1
R(t)

ds
+ δ.

The timing in the formula is a bit inconvenient. To see this note that at time t = 0 it
holds t−T = −T < 0, hence leading to undefined or meaningless quantity k(t−T, T ), at
least in our context. Therefore, consider depreciation evaluated at the end of the period
([t, t+R(t)]), that is at t+R(t), rather than at the beginning of the period, that is at t,

d =
(1− θ)k(t+R(t)−R(t),R(t))

q(t+R(t)−R(t))
1

R(t)∫ R(t)

0
k(t+R(t)−s,s)
q(t+R(t)−s)

1
R(t)

ds
+ δ =

(1− θ)k(t,R(t))
q(t)

1
R(t)∫ R(t)

0
k(t+R(t)−s,s)
q(t+R(t)−s)

1
R(t)

ds
+ δ.

Thus, a convenient way to define depreciation rate is,

d(t)
def
=

(1− θ)k(t,R(t))
q(t)

1
R(t)∫ R(t)

0
k(t+R(t)−s,s)
q(t+R(t)−s)

1
R(t)

ds
+ δ.
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Assume that T0 = 0 and Rt = R. Then, Tt = tR and Tt+s = (s+ t)R. Hence,

It =
1

q(Tt)

( p(Tt)
q(Tt)
− θe−rRtp(Tt+1) e

−δRt
q(Tt)

αA1−e−(r+δα)Rt

r+δα

) 1
α−1

takes a form,

It =
1

q(tR)

( p(tR)
q(tR)

− θe−rRp((t+ 1)R) e
−δR

q(tR)

αA1−e−(r+δα)R

r+δα

) 1
α−1

By using the assumptions (vii) and (vi), we obtain,

It = e−λtR

(
(r + αδ)e−(δ+r+tλ)R

(
e(δ+r+γt)R − θeγ(t+1)R

)
αA (1− e−(r+αδ)R)

) 1
α−1

.

The trick is to define I(t)
def
= I t

R
in order to get a function of continuous variable t

(measured in years). Thus,

I(t) = e−λt

(
(r + αδ)e−(δ+r)R+λt

(
e(δ+r)R+γt − θeγ(t+R)

)
αA (1− e−(r+αδ)R)

) 1
α−1

.

Recall that,

d(t) =
(1− θ)e−δRI(t)∫ R

0
e−δsI(t+R− s)ds

+ δ.

The integral in the denominator is surprisingly complex to calculate. Even for a computer
algebra system36, the integration may take several minutes. Nevertheless, the formula
simplifies to a simple expression, which is independent of time t,

d =
(1− θ)((1− α)δ + αλ− γ)

(1− α)
(
e(δ+αλ−γ

1−α )R − 1
) + δ,

which can be also written in the form,

d =
(1− θ)(δ + αλ−γ

1−α )

e(δ+αλ−γ
1−α )R − 1

+ δ.

36Wolfram Mathematica 11.2 was used in symbolic integration.
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When θ = 0, then the function G read as,

G(Tt, Rt, Rt+1) = rAKα
t+1

1− e−(r+δα)Rt+1

r + δα
− rp(Tt+1)It+1 − AKα

t e
−δαRt

+ p′(Tt+1)It+1 −
p(Tt+1)

q(Tt+1)
q′(Tt+1)It+1 + e−(r+αδ)Rt+1AKα

t+1.

By exploiting the assumption p = 1/q yields,

G(Tt, Rt, Rt+1) = rAKα
t+1

1− e−(r+δα)Rt+1

r + δα
− rIt+1

q(Tt+1)
− AKα

t e
−δαRt

− q′(Tt+1)It+1

q(Tt+1)2
− q′(Tt+1)It+1

q(Tt+1)2
+ e−(r+αδ)Rt+1AKα

t+1.

Using the fact It+1 = Kt+1

q(Tt+1)
, this becomes,

G(Tt, Rt, Rt+1) = rAKα
t+1

1− e−(r+δα)Rt+1

r + δα
−
r Kt+1

q(Tt+1)

q(Tt+1)
− AKα

t e
−δαRt

−
q′(Tt+1) Kt+1

q(Tt+1)

q(Tt+1)2
−
q′(Tt+1) Kt+1

q(Tt+1)

q(Tt+1)2
+ e−(r+αδ)Rt+1AKα

t+1

= rAKα
t+1

1− e−(r+δα)Rt+1

r + δα
− rKt+1

q(Tt+1)2
− AKα

t e
−δαRt

− 2q′(Tt+1)Kt+1

q(Tt+1)3
+ e−(r+αδ)Rt+1AKα

t+1.

Since (Rt)
∞
t=0 is characterized by the roots of the function G, it can be equivalently

confined to solve the roots of the function
K−αt+1

A
G(Tt, Rt, Rt+1),

K−αt+1

A
G(Tt, Rt, Rt+1) =

r − re−(r+δα)Rt+1

r + δα
−
(
r +

2q′(Tt+1)

q(Tt+1)

) K1−α
t+1

Aq(Tt+1)2

−
( Kt

Kt+1

)α
e−δαRt + e−(r+αδ)Rt+1 .

Thus, to find the optimal (Rt)
∞
t=0 is reduced to solving the roots of the following equation,

r + αδe−(r+δα)Rt+1

r + δα
−
(
r +

2q′(Tt+1)

q(Tt+1)

) K1−α
t+1

Aq(Tt+1)2
−
( Kt

Kt+1

)α
e−δαRt = 0.

When θ = 0 and p = 1/q, then the optimal Kt takes a form,

Kt =

(
αA(1− e−(r+δα)Rt)q(Tt)

2

r + αδ

) 1
1−α

.
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By substituting this into the equation and using the fact Tt+1 = Tt + Rt, we obtain the
final result. The optimal (Rt)

∞
t=0 is characterized by the roots of the following difference

equation,

G̃T0(Rt, Rt+1)
def
=
r + αδe−(r+δα)Rt+1

r + δα
−
(
r +

2q′(Tt +Rt)

q(Tt +Rt)

)
(1− e−(r+δα)Rt+1)α

r + αδ

−
(

(1− e−(r+δα)Rt)q(Tt)
2

(1− e−(r+δα)Rt+1)q(Tt +Rt)2

) α
1−α

e−δαRt = 0,

where initial value T0 varies over interval [0,∞[.
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